
2nd Mediterranean Conference on Embedded Computing ,,/" MECD - 2013 & ECyPS'2013 Budva, Montenegro

pState: A Probabilistic Statecharts Translator

Bojan Nokovic

Computing and Software Department
McMaster University

Hamilton, Ontario, Canada
Email: nokovib@mcmaster.ca

Abstract-We describe pState, an experimental software toolkit

for the design, validation and formal verification of complex

systems. Classical statecharts are extended with probabilistic

transitions, costs/rewards, and state invariants. Probabilistic

choice can be used to model randomized algorithms or unreliable

systems. Costs/rewards can be used to compute quantitative

properties such as expected power consumption or expected

number of lost messages in model of some communication

protocol. State invariants are used to express safety conditions or

consistency constraints. The charts are validated and

transformed into an intermediate representation, from which

code for various languages can be generated.

Keywords - verification; statecharts; quantitative properties;
model-checking; invariants

I. INTRODUCTION

The work reports on pState, a tool for the holistic modeling
of complex systems; pState allows the correctness of a design
to be evaluated, quantitative properties to be analyzed, and
executable code to be generated.

Statecharts are used to define the behavior of a system by
specifying how it reacts to external events. The formalism is an
extension of finite state machine by hierarchy, concurrency
and broadcasting [1]. Hierarchy is a structuring method that
allows the developer to maintain an overview of large and
complex applications by allowing to zoom in and out and
reveal as much detail as needed; hierarchy allows the design to
start with an outline and functionality to be added step by step.
Concurrency and broadcasting allow the concurrent nature of
complex systems to be naturally modeled. State charts are used
as a graphical specification tool for reactive systems, but they
are also executable and compilable [2].

pState supports pCharts, an extension of statecharts with
state invariants, probabilistic transitions, and costs/rewards.

State invariants are conditions that are attached to individual
states and specify what has to hold in that state [5]. Every
incoming transition to the state must ensure that state invariant
holds, and every outgoing transition can assume that invariant
holds which gives a method for checking a chart against an
annotation consisting of invariants attached to states in the state
hierarchy. State invariants can express safety of an embedded
system or consistency of a software system.

Emil Sekerinski

Computing and Software Department
McMaster University

Hamilton, Ontario, Canada
Email: emil@mcmaster.ca

Probabilistic transitions can quantify the amount of
certainty and quantitatively describe the randomness of the
system and the randomness of its environment. Probabilistic
descriptions are useful in requirements engineering and
specification of software systems: quality of service, varying
workload, randomized algorithms, unreliable environments,
and fault-tolerant systems [4]. A probabilistic transition leads
from a single state to one of several states depending on a
probability distribution [8]. Following our earlier work on
iState [3], pState implements an event-centric semantic in
which events are procedures, unlike the state-centric semantic
of UML and Statemate, in which events are data (in queues) [4,
10, 11, 12]. This is suitable as in our application, design and
analysis of low-power wireless systems, events are processed
quickly enough so that no queuing of events is necessary. The
first contribution of this work is to implement an event-centric
semantic of charts with probabilistic transition; the theory is
fully described in [9]; here we report on the tool pState.

Different types of costs or, equivalently, rewards can be
specified, like power consumption, number of failed
transmissions, or elapsed time. A theory for costs is given by
priced probabilistic automata; a recent overview with model
checking procedures is given in [13]. The second contribution
of this work is extending statecharts with costs. The overall
architecture of pState is shown in Fig. 1.

systl:!m model
sarelypropc:r1ies
quantilalj"c queries

validatioD YlIlidaion
,..eriHcabon results
quantiative anal),sis

pState

MDP
gm<ntion

properties
mode'

1----+1 M��"

result

L-__ -L __ .--L ____ �

Fig. 1. pState Architecture

Quantitative queries properties are specified as temporal
logic PCTL [6] formulae. The system model representation is
validated and if it is well-formed, executable code can be

2nd Mediterranean Conference on Embedded Computing ,,/" MECO - 2013 & ECyPS'2013 Budva, Montenegro

generated. For verification of state invariants and analysis of
quantitative queries, a model file and a properties file are
passed to PRISM, a tool for model checking probabilistic
systems [7]. The result is displayed in a separate window.

IT. CHART STRUCTURE

A probabilistic transition consists of a non-empty set ss of
source states, an event name E, an optional guard g with
Boolean expression g, and a non-empty set of probabilistic
alternatives. Each probabilistic alternative consists of a

probability Pi D [0 .. 1], a optional body bi, where each bi is a
statement without loops but possibly with broadcasts, optional
cost specifications c; = e;, where each c; is a cost name and
e; 2 0 is a real expression, and a non-empty set of target states
ts;. If the source or target consists of more than one state, these
originate from or go to concurrent states. Furthermore, the
sum of the probabilities of all alternatives must be 1. We use
following notation, where the ® symbol is left out if there is
only one probabilistic alternative.

E[g]
---- ss

S; E; C = e; i : l .. u; b : bool; ...
I i$c = e]

A state consists of an optional state name S, a possibly
empty list of declarations, an optional state invariant i, a
Boolean expression, and optional cost specifications $c = e,
where c is a cost name and e 2 0 is a real expression. A
declaration either declares a local event E, a constant C = e,
where e is a constant expression, an integer subrange variable
i : l..u, where I, u are constant expressions with u 2 I, or a
Boolean variable b : bool. Costs attached to transitions are
"one-time" costs, like the decrease of life expectancy of a
component when switching on and off or the count of the
number of message transmissions. Costs attached to a state
depend on the time spent in that state, like the power
consumption in standby state and transmitting state.

Ill. PSTATE EDITOR

Figure 2 gives a view of the pStatel graphical interface with
the example of a TV set. The TV control activity is partitioned
into two states, the Basic state Standby and the AND
(concurrent) state Working. The initial state is Standby. When
the chart is in Working state it is in both the Picture and Sound
states. Within XOR (hierarchical) state Picture the chart is in
one of the Basic states WarmingUp or Displaying, withinXOR
state Sound, the system is in one of the Basic states Waiting,
On, or Off. The invariant of Working is that whenever Picture

1
pState can be downloaded at http://pstate.mcmaster.ca

is in Displaying, Sound must not be in Waiting, i.e. must be
either in On or Off The invariant of Sound states that the sound
level lev must be between 1 and 10. The event power causes
the chart to flip between Standby and Working, no matter in
which substates of Working the chart is. The transition on event
warm broadcasts event soundOn. The transition on events
down can only be taken if lev > 1 and when taken, will
decrement lev. The transition on power to Working sets Picture
and Sound to the default initial states WarmingUp and Waiting
and sets lev to 5.

The structured editor uses the JHotDraw7.6 open-source
framework [14]. The design tool in Fig. 2 consists of the
drawing action, state figure, transition figure, initial state
figure, probabilistic state figure, concurrency line, formulae
box, and comment figure. To make the design more self
explanatory, semi-transparent text box comments can be added.
The standard attribute bar with all selections from the
JHotDraw framework is also provided, allowing for example
color to be added or lines emphasized. Visual elements are
added in drag-and-drop fashion using icons in the toolbar. The
editor supports the AND and XOR hierarchy when editing.
Unicode characters are used for Boolean and relational
operators for readability. An XML based format is used for
storing charts. Printing to PDF is also supported, see Fig. 3 for
an example of a generated chart.

a
�. -+

. .
�.®
a. 'f'

�

�
Pt-
B
I
lJ.

Working; "SCIlndOn lin Oisplaying .. � In Waiting

Fig. 2. Statecharts with invariants for TV set

IV. VERIFYING pC HARTS

TvSet.xml

St;tndbv �
._1

To verity pCharts we use PRISM, a model checker that
supports timing, probabilities, and costs [7]. The pState
constructs for probabilities and costs were designed to allow a
translation to PRISM, based on earlier work of translating
statecharts with invariants [3, 5]. That work shows how the
hierarchical state chart structure can be flattened into a guarded
command language like B [15]. Statements in PRISM are a
form of probabilistic guarded commands, with updates being
multiple assignment statements:

[]guard -> prab1 : update 1 + ... + prabn : updaten;

The PRISM models that we use are defined as Markov
Decision Processes (MDP) [16]. Currently pState generates

2nd Mediterranean Conference on Embedded Computing ,,/" MECD - 2013 & ECyPS'2013 Budva, Montenegro

textual model file and properties file. A property file is created
form state invariants and formulae specified in formulae boxes.

Fig. 3. Casting of a die using fair coin flips

Temporal logic formulae for the model checker are
generated from state invariants. The editor allows costs to be
specified for each alternative of a probabilistic transition or
only once for all alternatives, as in Fig. 3. The cost
specifications are extracted from all transitions and a rewards
structure is generated as part of the PRISM model. The
example of simulating the behavior of a standard six-sided die
by a fair coin is taken from [6]. The initial state is SO, and
states Dl, ... , D6 are possible die outcomes. If the outcome for
tossing a fair coin is heads, the left branch determines the next
state. If the outcome is tails, the right branch determines the
next state. Tossing the coin in S2 leads with equal probability
to either state S5 (from which the die-outcomes D4 or D5 are
possible with equal probability) or to state S6. From state S6, a
coin flipping yields with probability 112 the outcome D6, or
with a probability 1/2 return to state S2. When we run the code
generated by pState with PRISM we get an MDP model with
13 states and 20 transitions. All six final states are equally
likely, which can be shown with temporal formulae for the
probability of eventually reaching Dl, ... , D6. The probability
formulae

Pmin =?[F (root = D4)] Pmax =?[F(root = D4)] (1)

Both result in 0.l666665; the minimum and maximum
probability may differ in presence of non determinism.

Generated PRISM code for the die by a fair coin example:

mdp

const D3=0; const S6=1; const D6=2; const S2=3; const S3=4;
const D4=5; const SI=6; const S4=7; const 01=8; const SO=9;
const S5= I 0; const 05= II; const 02= 12;

module diebyfaircoin

root : [0 .. 12] init SO;

II Guarded commands
[Fl](root=Sl) -> 0.5:(root'=S4) + 0.5:(root'=S3);
[FO](root=SO) -> 0.5:(root'=S2) + 0.5:(root'=S I);
[F5](root=S5) -> 0.5:(root'=04) + 0.5:(root'=05);
[F4](root=S4) -> 0.5:(root'=D3) + 0.5:(root'=D2);

[F3](root=S3) -> 0.5:(root'=01) + 0.5:(root'=S I);
[F2](root=S2) -> 0.5:(root'=S5) + 0.5:(root'=S6);
[F6](root=S6) -> 0.5:(root'=S2) + 0.5:(root'=D6);

endmodule

rewards "flip"

[Fl]root=Sl: 1; [FO]root=SO: 1; [F5]root=S5: 1; [F4]root=S4: 1;
[F3]root=S3: 1; [F2]root=S2: 1; [F6]root=S6: 1;

endrewards

Each transition flipping the coin has a flip cost of I attached to
it. This allows to determine the expected number of coin flips
for reaching a final state. The reward formula

Rmin =?[F (root = Dl) I (root = D2) I (root = D3)1
(root = D4) I (root = D5) I (root = D6)] (2)

result in 3.666665 for both Rmin and Rmax which is calculated
using same formula (2). Formulae (1) and (2) are easy to write
once the reward structures are generated. On the other hand,
formulae for the correctness of invariants are automatically
generated, for example for the TV chart:

P >= 1 [G((1 <= lev) & (lev <= 10))]
P >= 1 [G((picture = Displaying) =>

!((sound = Waiting)))]
(3)

When we run on PRISM code generated by pState for TV
example, we get an MDP model with 60 states and 108
transitions. Formulae (3) are verified in 0.0010 seconds, on
MacBook Pro 1.83GHz Intel Code Duo, 2GB SDRAM.

Generated PRISM code for TV set example:

mdp

const N=100; const Standby=O; const Working=l; const WarmingUp=O;
const Oisplaying= I; const Waiting=O; const Off= I; const On=2;

modnle tvset

root : [0 .. 1] init Standby;
picture :[0 .. 1] init WarmingUp;
sound :[0 .. 2] init Waiting;
lev :[0 .. N] init 5;

II Guarded commands
[warm](root=Working)&(picture=WarmingUp)&(sound=Waiting) ->

(sound '=On)&(picture '=Displaying);
[warm](root=Working)&(picture=WarmingUp)&(sound!=Waiting) ->

(picture'=DispJaying);
[power](root=Working) -> (root'=Standby);
[power](root=Standby) ->

(root'=Working)&(picture'=WarmingUp)&(sound'=Waiting);
[down](root=W orking)&(sound=On)&(lev> 1) ->

(lev '=(lev -I))&(sound'=On);
[up](root=Working)&(sound=On)&(lev<10) ->

(lev '=(Iev+ 1»&(sound '=On);
[mute](root=Working)&(sound=On) -> (sound'=Off);
[mute](root=Working)&(sound=Off) -> (sound '=On);

endmodule

2nd Mediterranean Conference on Embedded Computing ,,/" MECO - 2013 & ECyPS'2013 Budva, Montenegro

V. COMPILING PCHARTS TO C CODE

The algorithm described in [5] is used to generate executable
code. We generate an IF statement for single operation events,
and a CASE statement if there is more than one operation on an
event. Implementation of parallel composition as sequential
composition is automated as it is described in [5]. Validation of
pCharts is done in three steps; (1) We check that composite
states are not childless. AND state must have at least two
children, and each child of AND state must be XOR state. (2)
Then we check that all XOR states have initial transitions, and
(3) we validate concurrent transitions by detecting transitions
between concurrent states which are not allowed. Portion of C
code generated from TV Set pCharts is shown bellow.

enum root_status (Working, Standby} root;
ennm picture_status {WarmingUp, Displaying) picture;
enum sound_status (On, Waiting, Off} sound;
int lev;

int main(void){
/Ill Initialization Ill/
picture = WarmingUp;
sound = Waiting;
lev = 5;
root = Standby;
return 0;

)
soundOnO{

if ((root == Working)) (

warm() (

if ((sound == Waiting)) {
sound = On;

if ((root == Working)) {

)
downO{

if ((picture == WarmingUp» (
soundOnO;
picture = Displaying;

if((root == Working» (

}
powerO(

if ((sound == On)&&(lev> 1» {
lev =(lev -1);
sound = On;

switch (root) {
case (Standby) :

root = Working;
picture = WarmingUp;
sound = Waiting;
lev = 5;

break;
case (Working):

root = Standby;
break;

VI. CONCLUSION

The development of pState was motivated by the analysis of a
specific kind of RFTD tags [17]. So far we have applied pState
to smaller examples. We are working on including timed
deterministic and stochastic transitions. This will allow us to
verifY requirements like ''the RFlD tag will not be excited more
than five times per hour in 95% of cases".

ACKNOWLEDGMENT

We are grateful to the reviewers for the constructive comments.

REFERENCES

[1] D. Harel, "Statecharts: A visual formalism for complex systems," Sci.
Comput. Program., vol. 8, no. 3, pp. 231-274, Jun. 1987.

[2] --, "Statecharts in the making: a personal account," in Proceedings of
the third ACM SIGPLAN conference on History of programming
languages, ser. HOPL III. New York, NY, USA: ACM, 2007

[3] E. Sekerinski and R. Zurob, "iState: A statechart translator," in UML
2001 - The Unified Modeling Language, 4th International Conference,
ser. Lecture Notes in Computer Science, M. Gogolla and C. Kobryn,
Eds., vol. 2185. Toronto, Canada: Springer-Verlag, 2001, pp. 376-390.

[4] D. N. Jansen, "Extensions of statecharts with probability, time, and
stochastic timing," Ph.D. dissertation, University of Twente, Enschede,
2003. [Online]. Available: http://doc.utwente.nI/58230/

[5] E. Sekerinski, "Verifying statecharts with state invariants," in 13th IEEE
International Conference on Engineering of Complex Computer
Systems, K. Breitman, J. Woodcock, R. Sterritt, and M. Hinchey, Eds.,
IEEE Computer Society, March 2008, pp. 7-14.

[6] C. Baier and 1. Katoen, Principles of Model Checking. The MIT Press,
2008.

[7] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, "PRISM: A
tool for automatic verification of probabilistic systems," in Proc. 12th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science, H.
Hermanns and J. Palsberg, Eds., vol. 3920. Springer, 2006, pp. 441-444.

[8] R. Segala and N. Lynch, "Probabilistic simulations for probabilistic
processes," Nordic 1. of Computing, vol. 2, no. 2, pp. 250-273, June
1995.

[9] B. Nokovic and E. Sekerinski, "Analyzing pCharts with probabilistic
model checker," April 2013, pp. 1-9, unpublished.

[10] R. Eshuis and R. Wieringa, "Requirements-level semantics for UML
statecharts," in Fourth International Conference on Formal Methods for
Open Object-Based Distributed Systems. S. Smith and C. Talcott, Eds.,
vol. 177. Kluwer Academic Publishers, 2000, pp. 121-140.

[11] D. Harel and A. Naamad, "The STATEMATE semantics of state charts,"
ACM Trans. Softw. Eng. Methodol., vol. 5, pp. 293-333, October 1996.

[12] Y. Zhao, Z. Yang, J. Xie, and Q. Liu, "Quantitative analysis of system
based on extended UML state diagrams and probabilistic model
checking," Journal of Software, vol. 5, no. 7, pp. 793 - 800, 2010.

[13] G. Norman, D. Parker, and J. Sproston, "Model checking for probabilis
tic timed automata," Formal Methods in System Design, vol. 41, no. 2,
pp. 1-27, October 2012.

[14] W. Randelshofer, ".I HotDraw," http://www.randelshofer.ch/oop/
jhotdraw/index.html, December 2012.

[15] 1.-R. Abrial, The B Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[16] M. 1. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

[17] B. Nokovic and E. Sekerinski, "Analysis of interrogator-tag
communication protocols," McMaster University, SQRL Report 60,
November 2010.

View publication statsView publication stats

