
Verification and Code Generation for Timed Transitions in
pCharts

Bojan Nokovic
McMaster University

Computing and Software Department
1280 Main Street West, Hamilton, Ontario,

Canada
nokovib@mcmaster.ca

Emil Sekerinski
McMaster University

Computing and Software Department
1280 Main Street West, Hamilton, Ontario,

Canada
emil@mcmaster.ca

ABSTRACT
This paper describes timed transition in pCharts, a varia-
tion of statecharts extended with probabilistic transitions,
costs/rewards, and state invariants. Timed transitions with
nondeterministic and stochastic timing can be used for the
specification and analysis of real-time systems. We present a
translation scheme for timed transition of pCharts into prob-
abilistic timed automata (PTA) and executable C code, as
implemented in our tool pState. To illustrate the develop-
ment process, we analyze the power consumption of a radio-
frequency identification (RFID) tag and generate code for
the PIC micro-controller.

Categories and Subject Descriptors
D.1.7 [Visual Programming]; D.2.2 [Design Tools and
Techniques]: State diagrams; D.2.4 [Software/Program
Verification]: Model checking, Formal methods

General Terms
Design, Verification

Keywords
RFID; Statecharts; pCharts; Probabilistic Model Checker;
Invariants; Costs/rewards

1. INTRODUCTION
Visual specification for modelling and code generation has
been the subject of intense interest. From a graphical design
of a reactive system, executable code can be generated, but
these models are commonly insufficient for stating quanti-
tative properties like resource consumption or performance.
Such properties can in principle be analyzed by model check-
ers, for which the system’s functionality has to be repre-
sented in particular model checker language, usually in the
form of guarded commands. Our goal is to create a visual
tool for code generation, verification, and quantitative anal-
ysis of complex systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
C3S2E’14, August 03 - 05 2014, Montreal, QC, Canada
Copyright @2014 ACM 978-1-4503-2712-1/14/08 $15.00.
http://dx.doi.org/10.1145/2641483.2641522.

Statecharts, a graphical language to describe the behaviour
of discrete-state reactive systems extend finite state dia-
grams by hierarchy, concurrency, and communication [5].
Statecharts are used to specify the behaviour of already built
computer systems, as well as the desired behaviour of sys-
tems under development. Statecharts are a modelling nota-
tion that captures the notion of correctness in terms of the
requirements that the system has to meet. Formal meth-
ods typically address model correctness as they operate on
a purely mathematical formalization. This makes it possible
to prevent errors inexpensively at early design stages.

Our extension of classical statecharts with state invariants,
probabilistic transitions, timed transition, stochastic tim-
ing, state costs and transition costs we call pCharts. Our
previous work [15] illustrates how C code is generated and
quantitative verification performed on a system specified by
pCharts without timed transitions. The algorithm to trans-
late specifications to input code of the probabilistic symbolic
model checker PRISM [6] is based on [23].

In this paper, we present the formal syntax of pCharts and
an algorithm for the translation of regular and timed transi-
tion into executable code and into the input language of
PRISM. pCharts without timed transition are translated
into a Markov Decision Protocol (MDP) model of PRISM
and pCharts with timed transition into a Probabilistic Timed
Automata (PTA)[17] model. PTA are finite state automata
extended with real-valued clocks and discrete probabilistic
choice [2, 10]. Quantitative verification is done over Prob-
abilistic Computational Tree Logic PCTL formulas. MDPs
can be used for verification of systems with probabilistic
and nondeterministic behaviour, while PTAs can be used to
verify systems which in addition to probabilistic and nonde-
terministic behaviour have real-time constraints [10].

On a PTA model we can analyze properties like (1) the min-
imum or maximum probability of reaching particular state
within given time, which is an eventually property, or (2)
the maximum expected time to reach some state, or dead-
line property. pCharts can be augmented with quantitative
information in the form of costs or rewards for transition
or state. Models with costs represent priced probabilistic
timed automata and can be used to reason about proper-
ties like (1) minimum/maximum expected time before some
transition will take place, or (2) excepted steps to reach a
particular state.

The code generation targets small embedded microcontrollers
in which there is no operating system and no support for
concurrency.

Statecharts with timed transition constructs (clocks, timed
guards, and invariants) have been analyzed with model-
checking in [20, 4]. A translation of UML statecharts with
timed extension into the parallel composition of flat timed
automata of UPPAAL is given in [4]. The flattering al-
gorithm is based on the translation of every hierarchical
composite state (XOR and AND) into one flat UPPAAL
automaton. PAT (Process Analysis Toolkit) supports the
formal verification of hierarchical timed systems specified in
the form of Stateflow diagrams [3]. The formalization of
UML state machines by an operational semantics presented
in [11] is implemented in the vUML tool for state machine
model-checking. Timed semantics for StateMate, in which
timed events are formalized in terms of clock transition sys-
tems over N is given in [20]. Modelling based on a set of
UML diagrams, called MADES UML diagrams, for reac-
tive, time critical embedded systems is presented in [1]. The
formal semantics is presented using a metric temporal logic.
With a prototypical verification tool, charts are translated
into the input language of the Zot [21] model checker.None
of these formalisms for hierarchical timed systems support
probabilistic transition and quantitative property verifica-
tion with costs attached to states and transitions.

The original statecharts paper treats time restrictions us-
ing implicit timers [5]: the expression timeout(event, num-
ber) specifies an event that occurs when specified number of
time units have elapsed from the occurrence of event. The
notation timeout(entered state, bound) is used to indicate
that a state comes with a bound, where an entered state
is the source of transition, and bound specifies time units.
In UML statecharts [18], a time event specifies an absolute
point in time a point in time or relative to some other point
in time. Telative and absolute time triggers are specified
with the keywords after and at, respectively, followed by a
time value. The main differences to the original statecharts
semantics [5] is the introduction of absolute time in UML.
Timed transitions in most of todays statechart tools, like
Stateflow with Simulink, Eclipse Papyrus, Yakindu State-
chart Tools, IAR Visual State, are specified according to
the UML statecharts notation. None of these tools allows
direct specification of stochastic timed transitions or costs.
The semantic of pCharts as implemented in pState [14] is
according to [24], in which the translation scheme is charac-
terized as event-centric where the main structure of the code
is that of events, i.e. events are procedures. The transla-
tion schemes of other tools like IBM Rational Rhapsody [7]
can be characterized as state-centric, because main structure
of the code are classes for states and events are data values
that are passed around. As already explored with iState [24],
the event-centric approach is suitable for those kind of reac-
tive systems where events are processed quickly enough so
that no queuing of events is necessary and where blocking
of events is undesirable. This semantic is close to [12].

This paper is organized as follows. The next section in-
troduces probabilistic guarded commands, the target of the
code generation algorithm. Section 3 presents the transla-
tion scheme for regular and timed transitions. In the Sec-

tion 4 we formally define the pCharts structure, and in 5 we
described algorithms for the code generation of regular and
timed transitions. In Section 6 the example of an RFID tag
illustrates the generation of a PTA model and verification
of properties like power consumption or probability to reach
a particular state. We also show how from a selected part
of this pChart executable code for an embedded system can
be generated.

2. PRELIMINARIES
Statements are inductively constructed as follows. Assuming
that b is a Boolean expression, xv is a list of unique variables,
ev is a list of expressions of the same length as xv , Q ,R are
statements, pv is a list of real expressions, and QV is a list
of statements of the same length as pv , the set Statement
consists of:

skip the empty statement, always enabled
stop the always blocking statement
xv := ev the multiple assignment, always enabled
g → R guarded command, enabled if g holds

and R is enabled
Q [] R nondeterministic choice between Q and

R, enabled if either one is
Q //R prioritizing choice, Q if Q is enabled, else R
Q ‖ R independent (parallel) composition of Q and R,

provided the assigned variables are disjoint,
enabled if both Q and R are

pv : QV probabilistic choice among QV with probability
according to pv , provided

∑
pv = 1

Thus a statement is either blocking or enabled. The inde-
pendent (or parallel) composition Q ‖ R is a generalization
of multiple assignment in the sense that (x , y := e, f) =
(x := e ‖ y := f). It is well-defined if the variables assigned
by Q and R are disjoint. For the variables accessed by Q
and R their initial values are taken. Thus there is no inter-
leaving. The probabilistic choice is more commonly written
as p1 : Q1 ⊕ · · · ⊕ pn : Qn or, using comprehension nota-
tion, ⊕ i ∈ I . pi : Qi . As both nondeterministic choice
and independent composition are associative, we write sim-
ply Q1 [] · · · [] Qn and Q1 ‖ · · · ‖ Qn without parenthesis,
or, using comprehension notation, [] i ∈ I . pi : Qi and
‖ i ∈ I . pi : Qi . The conditional statement is defined in

terms of above statements:

if b thenQ =̂ (b → Q) [] (¬b → skip)
if b thenQ elseR =̂ (b → Q) [] (¬b → R)

Probabilistic guarded commands can be defined by predi-
cate transformers [13]; for our purposes, a simpler defini-
tion by relations between the initial state and distributions
over the final state is sufficient, i.e. as functions of type
Γ → PDΓ, where DΓ = Γ → [0, 1] such that

∑
d = 1

for all d ∈ DΓ, distribution d is not 0 for finitely many
states of Γ, and P is the powerset operator. Intuitively, a
statement first makes an arbitrary nondeterministic choice
among distributions and then a probabilistic choice accord-
ing to that distribution. The independent composition leads
to a cross product of the state space, i.e. if Q : Γ → PDΓ
and R : ∆ → PD∆ then Q ‖ R : (Γ × ∆) → PD(Γ × ∆).
The following properties of statements will be used, where
b, c are Boolean expressions, P ,Q ,R are statements, xv , yv
are lists of variables, and ev , fv are lists expressions of same

length as xv , yv ; their proofs are left out for brevity:

xv := ev ‖ yv := fv = xv , yv := ev , fv (1)

b → c → Q = (b ∧ c)→ Q (2)

b → (P [] Q) = (b → P) [] (b → Q) (3)

(P [] Q) ‖ R = (P ‖ R) [] (Q ‖ R) (4)

(b → Q) ‖ R = b → (Q ‖ R) (5)

Above laws are known for standard (non-probabilistic) state-
ments and continue to hold for probabilistic statements. We
also need following laws involving probabilistic choice:

(p : P ⊕ q : Q) ‖ R =

p : (P ‖ R)⊕ q : (Q ‖ R) (6)

p : (q1 : Q1 ⊕ q2 : Q2)⊕ r : R =

p × q1 : Q1 ⊕ p × q2 : Q2 ⊕ r : R (7)

Probabilistic choice can be distributed inside guarded non-
deterministic choice provided that one of the guards is true:

p : (b1 → P1 [] b2 → P2)⊕ q : Q =

b1 → (p : P1 ⊕ q : Q) [] b2 → (p : P2 ⊕ q : Q)

if b1 ∨ b2 (8)

To see why the condition is necessary, assume that b1 =
b2 = false: the left side blocks with probability p and choses
T with probability q , but the right side always blocks.

3. ELEMENTS OF PCHARTS

Basic Charts. pCharts consists of a finite number of states
and transitions between those state. Upon an event, a sys-
tem may evolve from one state into another. States are
symbolized by (rounded) boxes. We represent the states of
a state diagram as a variable of an enumerated set type [22],
to which we here allow a cost, a non-negative real number, to
be associated, using the notation $c. The expression in(S)
tests if the chart is in state S and the statement goto(S)
moves the chart to state S :

S1$c1 Sn$cn...
r : {S1..Sn}

in(Si) = r = Si

goto(Si) = r := Si

cost(Si) = ci

Upon an event, a transition takes only place if in the cur-
rent state there is a transition on this event. Otherwise, the
event is ignored. Suppose only one transition for event E
exists. Boolean expression guard [g], cost specifications $c,
and action expression /a are optional. Actions are assumed
to be instantaneous. The operation op(E) of event E re-
turns a set of pairs g → S $c, each consisting of a guarded
command g → S and cost c:

S1 S2
l : E [g]$c/a

op(E) =
in(S1) ∧ g →

goto(S2) ‖ a $c

In case there are several transitions labelled with E , the one
starting from the current state is taken, if any transition is

taken at all. States S
′
1, ..S

′
n do not have to be distinct:

S1 S
′
1

l1 : E [g1]$c1/a1

...

Sn S
′
n

ln : E [gn]$cn/an

op(E) =
in(S1) ∧ g1 →

goto(S
′
1) ‖ a1 $c1 []

. . . []
in(Sn) ∧ gn →

goto(S
′
n) ‖ an $cn

In case of a probabilistic transition, each alternative consists
of a probability pi ∈ [0..1], an optional body ai , where each
ai is a statement that may include broadcasts.

S0

S1

Sn

p
l : E [g]$c

p1/a1

...

pn/an∑n
i=1 pi

op(E) =
in(S0) ∧ g →

p1 : goto(S1) ‖ a1 ⊕
. . .⊕
pn : goto(Sn) ‖ an $c

Each timed transition has a unique label, written l below.

We introduce the shorthand g
t−→ S for a guarded command

executed at time t .

t ∈ n.. | n1..n2 | exp(n) | unif (n)

In a PTA this involves a clock variable whose value is tested
in the guard and whose value is reset in the body of the
guarded command:

S1 S2
l : t [g]$c/a

op(l) =

in(S1) ∧ g
t−→

goto(S2) ‖ a $c

For timed events we allow equivalent notations: after(t) is
the same as t .., with the meaning that the transition is taken
any time after t , and between(t1, t2) is the same as t1..t2, with
the meaning that the transition is taken any time between
t1 and t2. Time is specified in time units, which are mil-
liseconds (ms), seconds (s), hours (h), or days (d); pState
normalizes the units to the smallest one used in a chart. As
a special case, we write simply t if the transition is to be
taken at exactly time t , formally between(t , t).

In the specification of the environment we allow two stochas-
tic transitions: exponential and uniform as introduced in [8,
9]. In the transition exp(t) the delay is defined by an ex-
ponential distribution with an average duration of t time
units. The timed transition unif (t1, t2, d) indicates a uni-
formly distributed delay with the given minimum duration
of t1 and maximum duration t2 time units. The uniform
distribution takes an optional parameter d for the step, as
the distribution is approximated discreetly.

Stochastic time events can be used only in the specification
from which code for model checker is generated, but at this

moment we do not generate executable code from stochastic
representation. The pecification of absolute timed events,
like an event to happen at May. 1st 2015, Noon is not
supported.

Hierarchy. Composite states can have substates or chil-
dren. If the system is in a state with substates, it is also in
exactly one of those substates. Conversely, if a system is in
a substate of a superstate, it is also in that superstate. In
statecharts, a superstate with substates is drawn by nesting.

S1$c1

T1$d1
... Tn$dn

... Sm$cm

r : {S1.. Sm},
s : {T1..Tn}

cost(Si) = ci
cost(Tj)= dj

goto(Si) = r := Si

goto(Tj)= s := Tj

When entering a superstate, the substate to be entered has
to be specified as well. In statecharts this is expressed by
letting the transition arrow point to a specific substate:

S2

S1 T1 Tm
l : E$c

op(E) = in(S1)→ goto(S2) ‖ goto(T1) $c

If we have two transitions on the same event E , the tran-
sition going out form superstate will have higher priority.
If guard g is true, transition from S1 to S2 will happen,
otherwise, transition form T1 to T2 will happen. Without
condition g on the transition from superstate, the transition
inside superstate would never happen.

S1

T1 T2 S2

m : E [g]$dl : E$c

op(E) = in(S1) ∧ g → goto(S2)) $d []
in(S1) ∧ in(T1) ∧ ¬g → goto(T2) $c

Concurrency. Concurrency is expressed by orthogonality:
a system can be in two independent states simultaneously.
This is drawn by splitting a state with a dashed line into in-
dependent substates, each of which consists of a number of
states in turn. A state with concurrent substates is entered
by a fork into states in each of the concurrent substates.

This corresponds to setting the variables for all the concur-
rent states:

Q

T

S2

Q1 ... Qn

T1
... Tm

S1

l : E$c

r : {S1,S2}, q : {Q1..Qm}, t : {T1..Tn}
op(E) = in(S1)→ goto(S2) ‖ goto(Q1) ‖ goto(T1) $c

Two concurrent states may have transitions on the same
event. In case this event occurs, these transitions are taken
simultaneously. Parallel composition of the transitions has
implications on the global variables which can occur in the
conditions and the actions, a variable can only be assigned
by one action:

Q

T

S1

Q1
E$c

Q2

T1
E$d

T2

op(E) = in(S1) ∧in(Q1) ∧ in(T1))→
goto(Q2) ‖ goto(T2) $(c + d) []

in(S1) ∧ in(Q1) ∧ ¬in(T1)→ goto(Q2) $c, []
in(S1) ∧ in(T1) ∧ ¬in(Q1)→ goto(T2) $d

Communication. Communication is possible between con-
current states in three ways [22]: First, concurrent states
can communicate by global variables. These can be set in
actions and read in actions and conditions, following the
rules for variables given earlier. Secondly, the condition or
the action of a transition may depend on the current sub-
state of a concurrent state. Thirdly, concurrent states can
communicate by broadcasting events. On a broadcast of an
event, all concurrent states react simultaneously. Events are
either generated internally through a broadcast or externally
by the environment. Broadcasting an event F corresponds
to calling op(F). In the below, the initial configuration is
(Q1,T1). On external event E , Q changes from Q1 to Q2,

and broadcasting event F changes T from T1 to T2. After
event E chart is in (Q2,T2):

Q

T

S1

Q1
E/F$c

Q2

T1
F$d

T2

op(E) = in(S1) ∧ in(Q1)→ goto(Q2) ‖ op(F) $c
op(F) = in(S1) ∧ in(T1)→ goto(T2) $d

4. PCHART STRUCTURE
A pChart is a structure with states, transitions, expressions,
types, and statements that are defined in turn.

States. We assume that Variable and Event are variable
and event names, that Basic, AND , XOR are finite, mu-
tually disjoint sets of state names, and let Composite =
AND ∪ XOR be the set of composite states and State =
Basic ∪ Composite be the set of all states:

Root ∈ XOR root state
parent : State − {Root} → State parent of each state

except the root state
var : State → (Variable 7→ Type) variables declared local

to a state
ev : State → PEvent events declared local

to a state
inv : State → Expr invariant attached to

a state
cost : State → Expr cost of being in a state

All states form a tree that is rooted in Root , formally Root ∈
parent∗[{s}] for any s ∈ State, where r∗ is the transitive and
reflexive closure of relation r and r [S] is the image of the
set S under r . We let the relation children be the inverse
of parent , i.e. children = parent−1. Basic states don’t have
children, children[Basic] = {}. The children of an AND
state are said to be concurrent, the children of an XOR
state are said to be exclusive. The children of an AND
state must be XOR states, children[AND] ⊆ XOR. The
variables of Root are the global variables, the events of Root
are the global events, and the invariant of Root is the global
invariant.

Transitions. For the transitions of a chart we assume that
Transition is a finite set of transitions and Alternative is a

finite set of probabilistic alternatives:

source : Transition → PState set of source
states of a transition

event : Transition → Event ∪ Time event of a regular or
timed transition

guard : Transition → Expr guard of a transition
cost : Transition → Expr cost of taking

transition
alt : Transition → PAlternative set of probabilistic

alternatives
of a transition

prob : Alternative → Expr probability of an
alternative

target : Alternative → PState set of target states
of an alternative

body : Alternative → Statement body of an
alternative

default : XOR 7→ Alternative default alternative
of an XOR state

The sets source, alt, target are non-empty. The state Root
must not be the source or target of any transition, Root 6∈
source(t) and Root 6∈ target(d) for any t ∈ Transition and
d ∈ alt(t). The default transition of an XOR state s, if de-
fined, must go to a descendant of s, i.e. target(default(s)) ⊆
children+[{s}], where r+ is the transitive closure of rela-
tion r .

Time is

Time =̂ between(R+
≥0,R

∞
≥0) | exp(R+

≥0) | unif (R+
≥0)

and timed transition can be regular or stochastic as illus-
trated later on.

The closest common ancestor cca(ss) of a set ss of states is
the state that is a proper ancestor of each state in ss and
all other common ancestors are also its ancestor. We write
x r y for the pair (x , y) belonging to relation r .

c = cca(ss) ≡c ∈ parent+[ss] ∧
(∀ a ∈ State . a ∈ parent+[ss]⇒ a parent∗ c)

The closest common ancestor exists and is unique for any
non-empty set of states that does not include the root state.
States r , s are orthogonal, written r ⊥ s, if their closest
common ancestor is an AND state and neither is an ancestor
of the other. A set ss of states is called orthogonal, written
⊥ ss, if every pair of distinct states of ss is orthogonal. All
source states of a transition must be orthogonal, ⊥ source(t)
for all t ∈ Transition and targets of an alternative must be
orthogonal, ⊥ target(d) for all d ∈ Alternative. The scope
of a transition is the state closest to the root through which
the transition passes.

scope(t) =̂ cca(source(t) ∪ (
⋃

d ∈ alt(t) . target(d)))

The path from state s to a set ss of descendants of s is the
set of those states that are descendants of s and ancestors
of states in ss, excluding s but including the states of ss.

path(s, ss) =̂ children+[{s}] ∩ parent∗[ss]

The states exited by a transition are all the states on the
path from the scope of the transition to its sources. The

states explicitly entered by a transition t are all the states
on the path from the scope of the transition to a specific
probabilistic alternative; if an alternative targets a descen-
dant of an AND state, then other states may be implicitly
entered as well. In general, entered(s, d) for state s and al-
ternative d targeting a descendant of s are all states on the
path from s to the target of d .

exited(t) =̂ path(scope(t), source(t))
entered(s, d) =̂ path(s, target(d))

Given a state set ss, the implicit children are those children
of AND states of ss that are not in ss. As children of AND
states are XOR states, all implicit children are XOR states.
If a chart enters ss, it also enters all its implicit children.

imp(ss) =̂ children[ss ∩AND]− ss

The completion of an alternative d starting at state s and
targeting descendants of s is the set of all alternatives that
are taken when d is taken: it adds to d the default alterna-
tives of XOR explicit targets of d and all default alternatives
of implicitly entered states.

comp(s, d) =̂ {(s, d)} ∪ (
⋃

r ∈ (target(d) ∩XOR)∪
imp(entered(s, d)) . comp(r , default(r)))

Certain XOR states are required to have a default initial
state: a default alternative must be defined for the root
state, Root ∈ dom default , and any XOR state that is the
target of some alternative or that is being implicitly en-
tered as it has an AND ancestor that is being entered. For-
mally this means that default must be defined such that
comp(scope(t), d) is well-defined for all t ∈ Transition and
d ∈ alt(t).

Expressions. A chart expression is composed from pro-
gram variables, state tests inS , where S is any state except
Root , and functions fn applied to zero or more arguments:

Expr ::= Variable | inS1, . . . ,Sm | fn(Expr1, . . . ,Exprn)

A function without arguments must be an integer, Boolean,
or real constant. A function can also be one of the unary
operators ¬e, −e, bec, dee, one of the binary arithmetic,
Boolean, and relational operators e + e, e − e, e ∗ f , e div e,
e mod e, e/f , e ∧ f , e ∨ f , e ⇒ f , e ⇐ f , e = f , e 6= f ,
e < f , e ≤ f , e > f , e ≥ f , or the logarithm, mini-
mum, or maximum function, log(e1, e2), min (e1, . . . , em),
max (e1, . . . , em).

Type. A chart type is either an integer subrange, Boolean,
or real.

Type ::= integer .. integer | bool | real

The partial function type : Expr 7→ Type determines the
type of an expression. The type of a variable is determined
by its declaration; the scope rules of languages with nested
structures apply here to nested states. If variable v occurs
in the body of a transition with scope S , then decl(v ,S) is
the closest ancestor, or S itself, where v is declared:

decl(v ,S) =̂ if v ∈ dom var(S) thenS else parent(S)

Thus, if v ∈ Variable occurs in state S , its type is:

type(v) =̂ var(decl(v ,S), v)

While expressions can be of any type, variables can only be
of subrange or Boolean type. An expression e is well-typed
if type(e) is defined. Transition guards, state invariants, and
conditions of conditional statements have to be of Boolean
type. Probabilities of alternatives, costs of states, and costs
of transitions have to be of type real.

Statements. A chart statement is either skip, a multiple
assignment, a parallel composition, or a conditional. In ad-
dition a chart statement can be a broadcast of event E ∈
Event , simply written as E . All assignment statements have
to be type-correct, i.e. the types of the left and right hand
side have to agree, and all broadcast statements have to be
conflict-free, in a sense to be defined shortly.

Conventions. In charts, if a transition guard [g] is missing,
it is assumed to be true. If a transition /B body is missing,
it is assumed to be skip. If there is only one probabilistic
alternative, its probability of 1 is left out.

5. TRANSLATION
We present two translations of charts to statements, op which
generates guarded commands for regular events and top which
generates guarded commands for timed events.

State Model. For representing the configuration (or“state”)
of a chart, we use a model that makes it easy to express in-
dependent updates of concurrent states and state tests of
any state in the hierarchy, and can directly be mapped to
a programming language [22]. For every XOR state s, in-
cluding Root , a variable lc(s), ranging over uc(c) for every
child c of s, is declared. We interpret lc(s) and uc(s) to be
the state s starting with a lowercase or an uppercase letter.
(We assume that these variables and their values are distinct
from variables declared in the chart.) This model allows to
define the state test and state assignment for any state s
that is a child of an XOR state by inspecting and assigning
the variable for that state:

test(s) =̂ lc(parent(s)) = uc(s)
assign(s) =̂ lc(parent(s)) := uc(s)

Manipulation of configurations is expressed in terms of test
and assign. The predicate in(ss) tests whether the current
configuration is in the set ss; similarly goto(ss) sets the cur-
rent configuration to ss.

in(ss) =̂ ∀ s ∈ ss ∩ children[XOR] . test(s)
goto(ss) =̂ ‖ s ∈ ss ∩ children[XOR] . assign(s)

As special cases we have in({}) = true and goto({}) = skip.
The statement goto(ss) is well-defined if the states of ss are
not exclusive.

Event Translation. The trigger of a transition t is true if
the transition guard is true and if the chart is in all source
states of the transition. The effect of a transition t is a prob-
abilistic choice among its alternatives: each alternative is
completed and for each completion, the body of the comple-
tion is executed and the system moves to all entered states

of the completion; in addition, clocks for timed events are
reset, to be explained later.

trigger(t) =̂ in(exited(t)) ∧ guard(t)
effect(t) =̂ ⊕ c ∈ alt(t) . prob(c) :

(‖ (s, d) ∈ comp(t , c) . body(d) ‖
goto(entered(s, d)) ‖
reset(entered(s, d)))

The operation of an event E is a statement that captures the
joint meaning of all transitions in a chart on E . For brevity,
let Trans(E , s) stand for the set of transitions on event E
with scope s:

Trans(E , s) =̂ {t | event(t) = E ∧ scope(t) = s}

The function op(E) recursively visits all transitions on E ,
starting with those on the outermost scope, Root . In case
there is a choice between transitions with the same scope,
one is selected arbitrarily. In case there is a choice between
transitions on different scopes, transitions on outer scopes
are given priority. All transitions on the same event in con-
current states are taken in parallel. Of all transitions in an
exclusive state, at most one can be taken. Following state-
charts, the response to an event on which no transition can
take place is to do nothing, i.e. skip, rather than to block. A
transition may also broadcast an event, say F , either explic-
itly or implicitly in one of the alternatives of its completion;
any transition taken on F is taken jointly with those on E
and if no transition on F can be taken, F behaves as skip.
Thus the meaning of broadcasting F is that of op(F). We
write S [F\T] for replacing event F by T in statement S :

op(E) =̂ scopeop(E ,Root)
scopeop(E , s) =̂ ([] t ∈ Trans(E , s) . trigger(t)→

effect(t)[F\op(F)]) // childop(E , s)
childop(E , s) =̂ case s of

XOR : [] c ∈ children[{s}]−
Basic . test(c)→ scopeop(E , c) // skip
AND : ‖ c ∈ children[{s}]−
Basic . scopeop(E , c)

end

The above definition generalizes to the case when more than
one event is broadcast. The function childop(E , s) is defined
only if s is an XOR or AND state, which the mutually re-
cursive definition respects at each call.

For an operation to be conflict-free, there must not be con-
flicting multiple assignments to the same variable. Such a
conflict may appear if the body of a transition assigns to, say
x , and broadcasts an event that also assignes to x . As chart
configurations are modified by assignments to variables, this
implies that no event can be transitively broadcast twice. By
extension, event broadcasting cannot be cyclic [25].

For pCharts with timed transition, set of timed transitions
with scope s is defined as:

Trans(s) =̂ {t | event(t) ∈ Time ∧ scope(t) = s}

While by op(E) we generate the code for the single event
E , by top() we generate the code for all timed transitions
of a chart. As timed transitions on outer scopes take prior-
ity over timed transition in inner scopes, generation starts
with timed transitions with scope Root and then recursively

descends to transitions with inner scopes, i.e.

top() =̂ tscopeop(Root)
tscopeop(s) =̂ ([] t ∈ Trans(s) . ttrigger(t)→

teffect(t)[F\op(F)]) // tchildop(s)
tchildop(s) =̂ case s of

XOR : [] c ∈ children[{s}]−
Basic . test(c)→ tscopeop(c) // skip

AND : ‖ c ∈ children[{s}]−
Basic . tscopeop(c)

end

where:

ttrigger(t) =̂ in(exited(t)) ∧ guard(t) ∧ timeout(t)

The scope s of each transition is an XOR state and with
each scope we associate a clock variable, clock(s). A timed
transition t with scope s is scheduled by clock(s). If event(t)
is between(l , u), then timeout(t) is l ≤ clock(scope(t)) and
clock(scope(t)) ≤ u becomes a timed invariant of the result-
ing PTA. We now can define the statement reset(ss) for a
set ss of states: for each timed transition t leaving some
s ∈ ss, the clock of scope(s) is reset, clock(scope(s)) := 0,
such that each t will be scheduled correctly.

A timed transition may broadcast an event, say F , but a
timed transition can not be broadcasted itself. If event F is
broadcasted, it has to be an untimed event since transition
taken on F is taken jointly with those on timed event.

PRISM allows only a flat collection of guarded commands
of the form b1 → S1 [] · · · [] bm → Sm , where each Si is of
the form p1 : A1 ⊕ · · · ⊕ pm : An and each Ai is a multiple
assignment statement. We call this the normal form of an
operation. For generating a normal form, first scopeop(E , s)
is equivalently expressed by making the guard explicit in-
stead of writing “// skip”. With abbreviations

TE =̂ [] t ∈ Trans(E , s) . trigger(t)→
effect(t)[F\op(F)]

TT =̂ ∀ t ∈ Trans(E , s) . ¬trigger(t)

we have:

scopeop(E , s) = TE [] TT → childop(E , s)

From the definitions we observe for effect(t) in TE that
goto(entered(s, d)) is a parallel composition of multiple as-
signments. If body(d) also consists only of multiple assign-
ments (or skip), then we can use (1) to transform effect(t)
into a single multiple assignment as needed for the normal
form. If body(d) contains conditionals, which by definition
are of the form (b → Q) [] (c → R), then first by (4) and (5)
the guard and the choice can be “moved out”, and on the
“top level” merged by (3) and (2) with other nondetermin-
istic choices of TE . We note that each conditional state-
ment leads to two “top level” choices. If effect(t) contains a
broadcast of an event, say F , then that has to be replaced by
op(F). We assume that op(F) is in normal form and show
how to transform TE to normal form. More specifically,
suppose that op(E) and op(F) are of the form:

op(F) = b1 → P1 [] b2 → P2

op(E) = c1 → (p : op(F)⊕ q : Q) [] c2 → R

We note that any operation is always enabled as P //Q is
enabled if either P or Q is, so P // skip is always enabled.

As op(F) is always enabled b1 ∨ b2 must hold and we can
use (8) to transform op(E) to

op(E) = c1 → (b1 → (p : P1 ⊕ q : Q) []
b2 → (p : P2 ⊕ q : Q)) [] c2 → R

which can then be brought into normal form by (3) and (2).
This generalizes to more than two probabilistic alternatives
and nondeterministic choices accordingly.

Now we show inductively that the result of scopeop(E , s)
can be transformed to normal form, assuming that recur-
sive calls are returning a normal form. Considering TT →
childop(E , s) as above, there are two cases. If s is an XOR
state, we use (3) and (2) to simplify childop(E , s). That is,
assuming childop(E , s) is of the form b1 → P1 [] b2 → P2,
where P1,P2 are in normal form (and b1, b2 are state tests)
we obtain:

TT → childop(E , s) = TT ∧ b1 → P1 [] TT ∧ b2 → P2

As P1,P2 are in normal form, (3) and (2) can be used again
to flatten the whole structure. If s is an AND state, we
use (4) and (3) to simplify childop(E , s). That is, assum-
ing childop(E , s) is of the form (b1 → P1 [] b2 → P2) ‖
(c1 → Q1 [] c2 → Q2), resulting the normal form returned
by scopeop(E , r), we obtain:

TT → childop(E , s) = TT ∧ b1 ∧ c1 → (P1 ‖ Q1) []
TT ∧ b1 ∧ c2 → (P1 ‖ Q2) []
TT ∧ b2 ∧ c1 → (P2 ‖ Q1) []
TT ∧ b2 ∧ c2 → (P2 ‖ Q2)

Considering now P1 to be r1 : R1 ⊕ r2 : R2 and Q1 to be
s1 : S1⊕s2 : S2, where R1,R2,S1,S2 are multiple assignment
statements, we use (6) for “moving out” the probabilistic
choice in P1 ‖ Q1 and then use (7) to flatten the nested
probabilistic alternatives:

P1 ‖ Q1 = r1 × s1 : (R1 ‖ S1)⊕ r1 × s2 : (R1 ‖ S2)⊕
r2 × s1 : (R2 ‖ S1)⊕ r2 × s2 : (R2 ‖ S2)

Repeating this process brings then TT → childop(E , s) in
normal form and therefore scopeop(E , s) in normal form,
which completes the induction. The procedure for trans-
forming all operations in normal form consists of repeat-
edly picking an event that does not contain a broadcast and
transforming its operation to normal form by first eliminat-
ing conditionals. All occurrences of broadcasts to that event
are replaced by its operation. This is repeated as long as
events have not been considered.

6. RFID TAG CASE STUDY
In this short case study, we show how the pCharts model
of Figure 1 can be used to analyze properties of an RFID
tag [19] and to generate code for am embedded system.
This model has concurrent states ElectronicTag and Envi-
ronment. In ElectronicTag, the basic operation of the RFID
device is specified. Initially, a tag is in StandBy and on
FieldOn it goes into Receive. Local event FieldOn is broad-
casted by Environment on transition from Off to On. State
Environment is initially in Off and in time between 58s and
62s, goes into On. During this transition, the boolean vari-
able field is set to true, which means that a low frequency
(LF) field is present in the environment.

RFIDSys; field: bool; frec: bool; N=20; i:0..N

 I

ElectronicTag

Environment

 I

Standby
$cons=0.0024

Transmit
 $cons=9.2

Receive
$cons=0.5

StandbyLF
$cons=0.15

Off
On 58s..62s/ FieldOn ‖ field:=true ‖ frec:=false

 I

exp(5s)/ field:=false / field:=false

FieldOn[i<N]/ i:=i+1

1s

 C

3s

[¬field]

10s

 P

1s

FieldID
@0.9/ frec:=true

@0.1

 C

/ frec:=false ‖ i:=0
[field]

[¬frec ∧ field]

[¬(¬frec ∧ field)]

Figure 1: Model of RFID Tag Excitation in pCharts

Whenever the electronic tag is in the range of an LF field, it
tries to read the unique field identification number ID . This
process takes about 1s, and on average is recognized in 90%
of cases. If the field ID is recognized, variable frec is set to
true. This is shown by a probabilistic transition from On
to FieldID. We assume that the field will disappear accord-
ing to an exponential distribution with a scale of 5s, which
is specified by transition exp(5s). This means that transi-
tion from state FieldID to Off can take between 1 and 58
sec. Theoretically exponential transition will take longer,
but we assume that each transition will be taken when the
probability of the transition is greater than 99.9999%. We
may allow the specification of exponential termination ep-
silon i.e. exp(5s, ε), which means that if the probability of
the transition is greater than 1−ε, it is consider to be 1. On
the transition from FieldID to Off the variable field, which
represents presence of the field, is set to false.

On the ElectronicTag side, in Receive, the system field ID
is read. If ID is not recognized (frec = false), but a field is
still present (filed = true), the tag goes into StandbyLF or
low field standby state, in which it stays the next 10s. This
is done to prevent multiple excitation by a pulsating field
which cannot be recognized, and to save energy since the
consumption in StandbyLF is lower than in Receive. While
in StandbyLF, broadcasted event by environment FieldOn
does not take any effect. If the reading of LF field ID is good
(frec = true), regardless of the status of field flag, the tag
goes to Transmit. After transmission of a preprogrammed
number of messages, the tag goes back into the initial state
Standby if field is not present (field = false), or goes to
StandbyLF if the field is still present (field = true). This
depends on how fast Environment goes from FieldID to Off,
and that is specified by the exponential timed transition
exp(5s).

To each state of ElectronicTag we assign a cost for the power
consumption. With our model, we can calculate the average
consumption after a number of broadcasts of FieldOn event.
To count broadcasts we introduce counter variable i and in-
crease it on every transition form Standby to Receive. In
Table 1 we show the minimum and maximum expected costs
of a tag cycle (path from initial state Standby back to that
state). The values are shown for three different probabilities
(0.9, 0.8, and 0.1) of a message to be lost, and for an ex-

ponential distribution of the field disappearance of exp(5s).
The maximal consumption of one excitation is calculated
using formula

R{”cons”}max =? [F environment = Off & i = 1] (9)

which sums the consumption in all ElectronicTag states (Re-
ceive, Transmit, Standby, StandbyLF) when Environment
reaches Off after one tag excitation (process of going form
Standby to Receive).

To validate the model, in addition to counter i which in-
creases every time when event FieldOn is generated, we can
add temporary End states in which both Environment and
ElectronicTag will go at the end of the test. (Without this
states PRISM would report a deadlock problem. The rea-
son is the condition on variable i on FieldOn event). The
verification of formula (9) for run 1 returns 26.7037 and the
elapsed time for the model checking process is 135.26 s, on
an Intel Core2 Duo CPU 2.00GHz laptop. The minimum ex-
pected consumption is 1.2394. The built model has 1136223
states and 1728571 transitions. The generated PRISM PTA
code for RFID case study is sown in theextended version of
this paper [16]. Based on the calculation of the maximal
consumption and information about tag battery capacity,
we can calculate the expected tag lifespan, as one of the
most important design requirements of active RFID tags.
By modifying the consumption in some states, we can ver-
ify impact on the overall consumption, which can help with
optimizing the product.

Executable code generation. pCharts describe the high
level structure and behaviour, rather than all details of the
implementation. From the pCharts specification we gen-
erate the scheduled timed events and the software control
loop, while other parts of the code, like oscillator setting,
initialization of the registers, evaluation of input, and set-
ting actions on the output are written separately. To han-
dle timed events we use the internal timer that generates
interrupt and call a procedure to count time in scheduled
timed events. From selected part of a pCharts model we
can generate executable code. In our example 1, if we select
ElectronicTag state (blue shaded state), executable code for
embedded system of microcontroler form PIC16Fxx family
can be generated. Internal timer is set to generate interrupt
every 1ms, which is used by the scheduler to arrange the next
due time procedure. We automatically generate PIC C code
framework, which includes all timed events and the software
control loop. Part of the code to configure the oscillator, ini-
tialize I/O and peripherals (setupProcessor.c), and code to
define I/O Actions (actions.h) are target dependent and are
written separately. The file which initialize scheduler data
and procedures (Scheduler.h) is prewritten and target inde-
pendent. The generated code is compatible with HI-TECH
C Compiler for PIC10/12/16 MCUs. Timed transitions
are managed by a scheduler with two procedures, schedule
and cancel. Procedure schedule(timedproc, tm, prio) sched-
ules the execution of timedproc at time tm with priority
prio. Procedure cancel(timedproc) removes timedproc from
the schedule. Generated executable code and source code of
other files an in an extended version of this paper [16]. Our
implementation of the code generation to micro-controllers
is similar to IAR Visual State for implementing embedded

applications based on state machines, but we assume that
events are processed fast enough so that we do not need
an event handler. IAR Visual State can be used for testing
and for code generation, but can not perform quantitative
verification of the systems.

7. CONCLUSION
We describe timed transition specification in pCharts from
which code for the probabilistic timed automata model of
the PRISM model checker and executable code for embed-
ded systems can be generated. On the PTA model we can
perform formal verification during system specification pro-
cess, which allows us to detect and isolate possible design
faults in earlier phases of software development. On a case
study we show how we can specify the impact of the en-
vironment, which can be used to optimize device hardware
(i.e. power consumption) and software design for a par-
ticular environment. The application can be developed in
a natural, iterative fashion. The translation of time transi-
tions specified in pChars to code is tested for each transition
(after, between, exactly, stochastic) separately, as well as on
the number of case study examples, but a formal proof of
translation correctness remains to done yet.

The experimental pState software development experimen-
tal tool enables rapid application development through the
use of a holistic pCharts design, which includes verification
of correctness, quantitative analysis, and code generation.

Currently we use PRISM as the backend model checker,
but the pState architecture allows other probabilistic model
checkers like Fortuna or MRMC to be added. The general
problem of model checkers is sate-space explosion. One of
the way to handle this problem is to use approximate or
statistical model checkers and estimate the correctness of
a design. Some probabilistic statistical model checkers like
APMC and Ymer can be also added as backend verification
tools.

Acknowledgements. We would like to thank the reviewers
for their valuable comments.

8. REFERENCES
[1] L. Baresi, A. Morzenti, A. Motta, and M. Rossi. A

logic-based semantics for the verification of
multi-diagram UML models. SIGSOFT Softw. Eng.
Notes, 37(4):1–8, July 2012.

[2] D. Beauquier. On probabilistic timed automata.
Theor. Comput. Sci., 292(1):65–84, Jan. 2003.

[3] C. Chen, J. Sun, Y. Liu, J. Dong, and M. Zheng.
Formal modeling and validation of stateflow diagrams.
International Journal on Software Tools for
Technology Transfer (STTT), 14:653–671, 2012.

[4] A. David, M. O. Möller, and W. Yi. Formal
verification of UML statecharts with real-time
extensions. In R.-D. Kutsche and H. Weber, editors,
Fundamental Approaches to Software Engineering, 5th
International Conference, FASE 2002, volume 2306 of
LNCS, pages 218–232. Springer, 2002.

[5] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, June

Table 1: Min/max Expected Cost vs. Channel Quality
Run Environment Electronic Tag Expected Cost

Succ. Lost. Exp Receive Standby Transmit StandbyLF Min Max
1 0.9 0.1 5 0.5 0.0024 9.2 0.15 1.2394 26.7037
2 0.8 0.2 5 0.5 0.0024 9.2 0.15 1.2524 23.9642
3 0.1 0.9 5 0.5 0.0024 9.2 0.15 1.3434 4.7871

1987.

[6] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A tool for automatic verification of
probabilistic systems. In H. Hermanns and J. Palsberg,
editors, Proc. 12th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, volume 3920 of Lecture Notes in Computer
Science, pages 441–444. Springer, 2006.

[7] IBM. IBM Rational Rhapsody. http://www-03.ibm.
com/software/products/en/ratirhapfami, February
2014.

[8] D. N. Jansen. Extensions of Statecharts with
Probability, Time, and Stochastic Timing. PhD thesis,
University of Twente, Enschede, 2003.

[9] D. N. Jansen. More or less true: DCTL for
continuous-time MDPs. In Proceedings of the 11th
International Conference on Formal Modeling and
Analysis of Timed Systems, FORMATS’13, pages
137–151, Berlin, Heidelberg, 2013. Springer-Verlag.

[10] M. Kwiatkowska, G. Norman, and D. Parker.
Stochastic games for verification of probabilistic timed
automata. In J. Ouaknine and F. Vaandrager, editors,
Proc. 7th International Conference on Formal
Modelling and Analysis of Timed Systems
(FORMATS’09), volume 5813 of LNCS, pages
212–227. Springer, 2009.

[11] J. Lilius and I. P. Paltor. Formalising UML state
machines for model checking. In Proceedings of the
2nd international conference on The unified modelling
language: beyond the standard, UML’99, pages
430–444, Berlin, Heidelberg, 1999. Springer-Verlag.

[12] E. Mikk, Y. Lakhnech, M. Siegel, and G. J.
Holzmann. Implementing statecharts in
PROMELA/SPIN. In Proceedings of the Second IEEE
Workshop on Industrial Strength Formal Specification
Techniques, WIFT ’98, pages 90–, Washington, DC,
USA, 1998. IEEE Computer Society.

[13] C. Morgan, A. McIver, and K. Seidel. Probabilistic
predicate transformers. Association for Computing
Machinery Transactions on Programming Languages
and Systems, 18(3):325–353, May 1996.

[14] B. Nokovic. pState Webpage. pstate.mcmaster.ca,
July 2014.

[15] B. Nokovic and E. Sekerinski. pstate: A probabilistic
statecharts translator. In Embedded Computing
(MECO), 2013 2nd Mediterranean Conference on,
pages 29–32, 2013.

[16] B. Nokovic and E. Sekerinski. Verification and Code
Generation for Timed Transitions in pCharts -
Extended. http://www.cas.mcmaster.ca/~nokovib/
C3S2E2014extended.pdf, July 2014.

[17] G. Norman, D. Parker, and J. Sproston. Model
checking for probabilistic timed automata. Formal

Methods in System Design, 43(2):164–190, 2013.

[18] OMG Unified Modeling LanguageTM (OMG UML),
Superstructure, Version 2.2, 2009.

[19] M. Paun. Posttag PT23 technical specification.
Technical report, Lyngsoe Systems, 2006. Internal
report.

[20] C. Petersohn and L. Urbina. A timed semantics for
the statemate implementation of statecharts. In
J. Fitzgerald, C. Jones, and P. Lucas, editors, FME
’97: Industrial Applications and Strengthened
Foundations of Formal Methods, volume 1313 of
Lecture Notes in Computer Science, pages 553–572.
Springer Berlin Heidelberg, 1997.

[21] M. Pradella, A. Morzenti, and P. San Pietro. Refining
real-time system specifications through bounded
model- and satisfiability-checking. In Automated
Software Engineering, 2008. ASE 2008. 23rd
IEEE/ACM International Conference on, pages
119–127, 2008.

[22] E. Sekerinski. Graphical design of reactive systems. In
D. Bert, editor, B’98: Recent Advances in the
Development and Use of the B Method, volume 1393
of Lecture Notes in Computer Science, pages 182–197.
Springer-Verlag, 1998.

[23] E. Sekerinski. Verifying statecharts with state
invariants. In K. Breitman, J. Woodcock, R. Sterritt,
and M. Hinchey, editors, 13th IEEE International
Conference on Engineering of Complex Computer
Systems, ICECCS ’08, pages 7–14, Belfast, Northern
Ireland, March 2008. IEEE Computer Society.

[24] E. Sekerinski and R. Zurob. iState: A statechart
translator. In M. Gogolla and C. Kobryn, editors,
UML 2001 – The Unified Modeling Language, 4th
International Conference, volume 2185 of Lecture
Notes in Computer Science, pages 376–390, Toronto,
Canada, 2001. Springer-Verlag.

[25] E. Sekerinski and R. Zurob. Translating statecharts to
b. In M. Butler, L. Petre, and K. Sere, editors, Third
International Conference on Integrated Formal
Methods, volume 2335 of Lecture Notes in Computer
Science, pages 128–144. Springer-Verlag, 2002.

APPENDIX
A. GENERATED PRISM PTA CODE

pta

const N=20;
const RFIDSys=0;
const On=0; const FieldID=1; const Off=2;
const EEnd=3; const End=4;
const Receive=0; const Standby=1; const Transmit=2;
const StandbyLF=3;

module rfidformats
tc1 :[0..58] init 0;
root :[0..1] init RFIDSys;
environment :[0..3] init Off;
environmentclk : clock;
electronictag :[0..4] init Standby;
electronictagclk : clock;
i :[0.. N] init 0;
field : bool init false;
frec : bool init false;

invariant
(environment=On=>environmentclk<=1)
& (environment=FieldID=>environmentclk<=5)
& (environment=Off=>environmentclk<=58)
& (electronictag=Receive=>electronictagclk<=1)
& (electronictag=Transmit=>

electronictagclk<=3)
& (electronictag=StandbyLF=>

electronictagclk<=10)
endinvariant

[] (electronictag =Transmit)&(electronictagclk=3)−>
(electronictag ’=field?StandbyLF:Standby)&
(electronictagclk ’=0);

[] (electronictag =StandbyLF)&
(electronictagclk =10) −>
(electronictag ’=Standby)&(electronictagclk’=0);

[] (environment=FieldID)&(tc1>=58) −>
(environment’=Off)&(environmentclk’=0)&
(field ’=false);

[] (environment=FieldID)&(tc1<58)&
(environmentclk>=1) −>
0.81873:(environment’=FieldID)&
(environmentclk’=0)&(tc1’=(tc1+1)) +
0.18127:(environment’=Off)&(field’=false);

[] (environment=Off)&(environmentclk>=58)&
(environmentclk<=62) &(electronictag=Standby)&
(i<N) −>
(i’=(i+1))&(field’=true)&(frec’=false)&
(environment’=On)&(environmentclk’=0)&
(electronictag ’=Receive)&(electronictagclk’=0);

[] (environment=Off)&(environmentclk>=58)&
(environmentclk<=62) &
(electronictag !=Standby)&(i<N) −>
(field ’=true)&(frec’=false)&
(environment’=On)&(environmentclk’=0);

[] (environment=On)&(environmentclk=1) −>
0.9:(environment’=FieldID)&(frec’=true) +
0.1:(environment’=FieldID)&(environmentclk’=0);

[] (electronictag =Receive)&(electronictagclk=1) −>
(electronictag ’=!((!(frec)&field))?
Transmit:StandbyLF)&(electronictagclk’=0);

[] (electronictag =Standby)&(i=N) −>
(electronictag ’=End);

[] (environment=Off)&(i=N) −>
(environment’=EEnd);

endmodule

rewards ”cons”
(electronictag =Receive): 0.5;
(electronictag =Standby): 0.0024;
(electronictag =Transmit): 9.2;
(electronictag =StandbyLF): 0.15;

endrewards

B. GENERATED CODE FOR PIC16XX

#include <pic.h>
#include <stdio.h>
#include <stdlib.h>
#include <htc.h>

#include ”scheduler.h”
#include ”actions.h”

/∗ Global variable declaration ∗/
enum electronictag status

{StandbyLF, Receive, Standby, Transmit} root;

bit frec = 0;
bit field = 0;

void exactly0 (unsigned int);
void exactly1 (unsigned int);
void exactly2 (unsigned int);
void exactly3 (unsigned int);

// Configuration bits :
CONFIG(WAKECNT & FCMDIS & IESODIS &

BORDIS & UNPROTECT & MCLREN &
PWRTEN & WDTDIS & INTIO);

/∗ Main Program ∗/
int main(void){

/∗ Configure the oscillator ,
initialize I/O and Peripherals ∗/

InitDevice() ;

/∗ initialize data ∗/
n = 0;
tr = 0;
ir = 1;

root = Standby;
frec=false;
timer running = 1;

while(1) {
/∗ Timed event trigger polling ∗/
if (run) {

run = 0;
timedEvent[event] (tm[event]);

}

/∗ I/O Actions ∗/
}

}

void FieldOn(unsigned int t){
if ((root == Standby)) {

root = Receive;
schedule(exactly2, 1000, 1);

}
}

void exactly1(unsigned int t){
if ((root == StandbyLF)) {

root = Standby;
frec=false;

}
}

void exactly0(unsigned int t){
if ((root == State)) {

if (field){
root=StandbyLF;
schedule(exactly1, 20000, 1);

}
else{

if (!(field)) {
root=Standby;

}
}

}
}

void exactly2(unsigned int t){
if ((root == Receive)) {

if (!(frec)){
root=State;
schedule(exactly0, 1000, 1);

}
else{

if (frec) {
root=Transmit;
schedule(exactly3, 4000, 1);

}
}

}
}

void exactly3(unsigned int t){
if ((root == Transmit)) {

if (field){
root=StandbyLF;
schedule(exactly1, 20000, 1);

}
else{

if (!(field)) {
root=Standby;

}
}

}
}

C. PROCESSOR SETUP
/∗
∗ File : setupProcessor.c
∗
∗ Created by Bojan Nokovic on 13−08−03.
∗
∗ Copyright (c) 2013
∗ McMaster University, Hamilton, Canada
∗ All rights reserved.
∗
∗/

#include <htc.h>
#include <stdio.h>
#include <stdlib.h>
#include <pic16f636.h>

/∗ System frequency ∗/
#ifndef XTAL FREQ
#define XTAL FREQ 1695000
#endif

/∗ Initialize registers ∗/
void InitDevice(void) {

//OPTION = 0b10000110; //Enable TMR0 with
1:128 prescaler

OPTION = 0b00000110; // Enable internal pull up
// Pull−ups on PORTA/

PORTB are disabled
// Interrupt on falling edge

of INT pin
// Internal instruction cycle

clock (FOSC/4)
// Increment on high−to−low

transition on T0CKI pin
// Prescaler is assigned to

the Timer0 module
// TMR0 rate = 1:128

INTCON = 0x00; // All interrupts disabled .
IOCA = 0x00; // Interrupt on change for

PORTA disabled.

TRISA = 0b00110101; // PORTA directions: 1=
input, 0=output

TRISC = 0x01; // RC0 − input, all other
outputs

PORTC = 0b00000000;
PORTA = 0x00;

/∗ Configure timer 0 ∗/
T0CS = 0; // Timer mode for Timer0
PSA = 0; // Assign the prescaler to

Timer0
TMR0 = 249; // 256 − TIMER counts ms; 1/

Fosc/4 ∗ TIMER counts ms ˜ 1ms

GIE = 1; // Global interrupt enable
T0IE = 1; // Enable Timer0 Overflow

interrupt
}

D. SCHEDULER

/∗
∗ File : tTimer.h
∗
∗ Created by Bojan Nokovic on 13−08−03.
∗
∗ Copyright (c) 2013
∗ McMaster University, Hamilton, Canada
∗ All rights reserved.
∗
∗/

#ifndef SCHEDULER H
#define SCHEDULER H

/∗ For 1 ms delay @ F=1.695MHz Tcy= 1/(F/4)=2.36us
∗/

// const unsigned char TIMER counts ms = 141;
// for F=32KHz (0..7);
const unsigned char TIMER counts ms = 7;

unsigned int timer ticks ;
char timer running;

int test = 0;
int b=0;

void InitDevice(void);
void Tick(void);
void schedule(void (∗myTimedEvent)(int), int, int);
void cancel(void (∗myTimedEvent)(int));

char timer running;

void (∗timedEvent[MAX TIMED EVENTS])(unsigned int
); // array of event function pointers

char ir ;
char tr ;
unsigned int tm[MAX TIMED EVENTS]; // time
int pr[MAX TIMED EVENTS]; // priority
int n; // number of timed

event to schedule
char run;
int event;

/∗
∗ Tick is called every ms.
∗ It decrease time in scheduled time event, when it

reach zero,
∗ event is enabled.
∗/

void Tick(void) {
int i = 0;
if (timer running) {

for (i = 0; i < n; i++) {
// search for due event
if (!−−tm[i]) {

// there is tmed event to be executed
run = 1;
event = i;
// if slef−loop, we have to take care

about
// cumulative drift

}
}

}
}

/∗

∗ Timer overflow interrupt
∗/

static void interrupt
isr (void)
{

// Timer interrupt
if (T0IF) {

// Increase internal timer tick
Tick();
TMR0 = 256 − TIMER counts ms; // 1/Fosc/4 ∗

TIMER counts ms ˜ 1ms
T0IF = 0;

}
}

/∗
∗ Add event to data structure
∗ myTimedEvent − function pointer
∗ t − time
∗ p − priotity
∗/

void schedule(void (∗myTimedEvent)(int), int t, int p) {
tm[n] = t;
pr[n] = p;
timedEvent[n] = myTimedEvent;
n = n + 1;

}

/∗
∗ Cancel timed event
∗ myTimedEvent − function pointer
∗/

void cancel(void (∗myTimedEvent)(int)) {
int i = 0;
while (timedEvent[i] != myTimedEvent && (i <

MAX TIMED EVENTS)) {
i++; // search for myTimedEvent

}
if (i < n) {

// Swap with last
n = n − 1;
timedEvent[i] = timedEvent[n];
tm[i] = tm[n];
pr[i] = pr[n];

}
}

#endif /∗ Scheduler.h ∗/

