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Abstract. In model-driven development of embedded systems, one would ide-
ally automate both the code generation from the model and the analysis of the
model for functional correctness, liveness, timing guarantees, and quantitative
properties. Characteristically for embedded systems, analyzing quantitative prop-
erties like resource consumption and performance requires a model of the envi-
ronment as well. We use pState to analyze the power consumption of mote in-
tended for water quality monitoring of recreational beaches in Lake Ontario. We
show how system properties can be analyzed by model checking rather than by
classical approach based on functional breakdown and spreadsheet calculation.
From the same model, it is possible to generate a framework of executable code
to be run on the sensor’s microcontroller. The goal of model checking approach
is an improvement of engineering efficiency.
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1 Introduction

In this work we build a model for and analyze the power consumption of water moni-
toring motes developed in the MacWater [1] project. The sensors are intended for water
quality monitoring of beaches on Lake Ontario, to supplement and speed up the exist-
ing practice of manually taking water samples and analyzing them in a lab. For battery-
powered motes, power consumption has a main impact on product usability. A shorter
battery life requires more frequent battery replacements. As the motes are deployed in
buoys (placed on a specific distance from the shore according to local regulations for
testing water quality of beaches), there is a significant effort in battery replacements or
any kind of maintenance.

The classical approach to power model design is based on a functional breakdown.
First, power consumption is calculated following a design process similar to the one
described in [2, 3]. Next, all activities that are possible sources of power consumption
or logical activities [4] are identified. Finally power consumption is calculated manually
by standard mathematical operations or with the help of standard tools, e.g. spreadsheet.

In our approach the system is first described by pCharts, a visual language for spec-
ifying reactive behaviour. Then, after specifying power consumption in relevant states,
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input code for a probabilistic model checker is automatically created and power con-
sumption calculated as a cost over probabilistic computational tree logic (PCTL) for-
mula. On the example of Waspmotes, commercial Arduino-based motes by Libelium,
we present the interaction between the environment and a device as a complex prob-
abilistic timed automaton (PTA), on which it is still feasible to perform quantitative
analysis by an off-the-shelf probabilistic model checker. In addition to the calculation
of power consumption, we generate the framework of executable code to be run on the
microcontroller. We model complex embedded systems, but the code here is executed
on microcontrollers with restricted resources.

Application domains of embedded systems go from consumer electronics to telecom-
munication and transportation industries. Because of that, design and analysis of em-
bedded systems have significant practical interest. The conventional software design
process starts with gathering requirements. During the design, a system model is created
and from the model, executable code is generated. Testing and performance measure-
ments validate the design. If a problem is discovered, a step back in the design process
needs to be taken, the system model is modified, and executable code is generated again.
Our goal is to make the whole process less expensive and time-consuming. We present
a process in which the whole validation is done on the system design model by model
checking. Executable code is generated after validation and is guaranteed to satisfy the
requirements. We developed a visual formalism for the design and analysis of complex
embedded systems, pCharts, and its associated experimental tool, pState. Through the
pState editor, the model, safety properties, and quantitative queries are entered. From
the model, executable code for the software part of the system can be generated, safety
properties can be verified, and quantitative properties can be analyzed.

In our previous works we introduced the basic features of pState [5] and described
timed transitions [6]. In [7] we explained how the tool is designed, and we show how
a communication protocol for radio-frequency identification (RFID) tags can be an-
alyzed. In [8] we show on few simple examples how properties are specified in an
intuitive way such that they can be written without knowledge of temporal logic. In this
paper we we are focused on the methodological aspect and show that systems with tens
of thousands states can be effectively analysed.

2 Related Work

Statecharts are a modelling notation which captures intuitively the requirements an em-
bedded system has to meet. Formal methods typically address model correctness as they
operate on a purely mathematical formalization. This makes it possible to prevent errors
inexpensively at early design stages. Different variations of statecharts can be analyzed
using Spin [9], NuSMV, SAL, and similar tools. Statecharts with timed transition con-
structs (clocks, timed guards, and invariants) have been analyzed by model-checking
in [10, 11]. A formal semantics in terms of clocked transition systems is given in [10].
A translation of UML statecharts with a timed extension into the input language of the
UPPAAL verification tool is given in [11]. The formalization of UML state machine
in terms of an operational semantics presented in [12] is implemented in the tool for
state machine model checking vUML. Baresi et al. describe model based set of UML
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diagrams, called MADES UML diagrams for development of reactive, time critical em-
bedded systems [13]. A formal semantics is presented using metric temporal logic. By
a prototype verification tool, charts are translated into the input language of Zot [14], a
bounded model/satisfiability checker.

pCharts are translated either into MDP or PTA [15] models and quantitatively ver-
ified over constructed PCTL formulas. MDP models are used for the verification of
probabilistic and nondeterministic systems and PTA models can verify systems with
real-time behaviour [16] by using clock variables whose values range over non-negative
reals. Clock variables increase at the same rate as time and can be reset. pCharts can be
augmented with transition or state quantitative information in the form of costs. Model
with costs represent priced probabilistic (timed) automata and can be used to reason
about properties like (1) minimum/maximum expected cost before some transition will
take place, or (2) excepted cost to reach a particular state. To the best of our knowledge,
pState is the first tool capable of generating input code for a probabilistic model checker
from hierarchical states models with costs and stochastic transitions.

3 Chart Structure

A pChart is a hierarchical structure of states with transitions, expressions, types, and
statements. The formal definition and a detailed description of pCharts syntax and se-
mantics is given in [5, 6]. In this section, we briefly describe chart transitions, so that
the specification in the following case studies will be easier to understand. The visual
formalism of pCharts borrows hierarchical states, concurrent states, and broadcasting
from statecharts [17] and adds state invariants, probabilistic transitions, and costs (or
rewards) attached to both states and transitions.

Probabilistic transitions can be used to express randomized algorithms or to quan-
tify the uncertainty of the environment. Probabilistic descriptions are useful for an-
alyzing quality of service, response time, unreliable environments, and fault-tolerant
systems. Quantitative queries can also be attached to any state in a state hierarchy. In
general, quantitative queries are specified in the temporal logic PCTL [18] with op-
erators for probabilities and costs/rewards. Due to the presence of nondeterminism,
minimum and maximum probability and minimum and maximum cost/reward have to
be distinguished. Analysis in pState proceeds by generating from the hierarchical, vi-
sual model a flattened, textual model together with quantitative queries that are passed
to a probabilistic model checker. From charts without timed transitions, pState gen-
erates a Markov decision process (MDP) model, and from charts with timed transi-
tions, pState generates a probabilistic timed automata (PTA) model. As the probabilistic
model checker we use PRISM [19].

Transition label, E[g]$c = e, consists of an event name E, an optional guard g with
Boolean expression g, and optional cost specifications $c = e, where c is a cost name
and e ≥ 0 is a numerical expression. Probabilistic alternative label, pi/bi, consists of a
probability pi ∈ [0..1], an optional body bi, where bi is a statement without loops but
possibly with broadcasts. The sum of the probabilities of all alternatives must be 1. If
there is only one alternative, probability p1 is left out.
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State label, S ;E ;C = e ; i : l..u ;b : bool ; . . . | inv$c = e, consists of state name S, a
possibly empty list of integer and boolean declarations, an optional state invariant inv,
a Boolean expression, and optional cost specifications $c = e.

4 Waspmote Sensor Power Consumption

We show how pCharts can be used to model the power consumption of the end-unit
devices, and how to generate the framework for device-executable code. In a collab-
orative research effort, new sensor types for water quality indicators are developed.
For the purpose of this paper, we use commercially available sensors to measure pH
of lake water, to read the geographic position of the sensor by GPS, and to transmit
data the ZigBee protocol. In our experiment we also use sensors to measure water con-
ductivity, dissolved oxygen, and dissolved ions, which we leave out here for brevity.
We show how to specify the impact of the environment on the working device, and
how to quantitatively verify that impact. The model in Figure 1 has three concurrent
states Device, Environmnet and Test. The state Device has itself four concurrent com-
posite states Board, pH, ZigBee, and GPS. The state Device represents behaviour of
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Fig. 1. Wireless Sensor Power Model in pCharts

the Waspmote [22] water monitoring mote. State Environment represents the impact of
the environment on GPS communication. We add state Test to specify queries to be
quantitatively verified by the model checker.

Initially, the state Board is in DeepSleep, state pH is in pHOff, state ZigBee in Zig-
BeeOff, and state GPS in the GPSOff. Every 10 seconds, Board wakes up, and broad-
casts the event pHOn. On this event pH state goes from pHOff to pHSensorOn and
executes the command pHTurnOn. This command is a separately written external func-
tion. For model checking, it is ignored, but it is used for executable code generation.
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In the state pHSensorOn, pH stays only 5ms, to measure water acidity, and then goes
back to pHOff state. During this process it broadcasts pHRead event and call TurnpHOff
command. On the event pHRead, Board goes from pHWarmUp to GpsWarmUp, and
broadcasts event GpsOn.

On the event GpsOn, state GPS goes from initial state GpsOff to GpsCheck and
broadcasts event Connect. On this event, Environment moves form GpsEnvIdle to Ini-
tialDelay. The GPS is used to read a position of the device. In normal operation, based
on our measurements, is takes between 1.8s and 2.2s for GPS to get connected. No
connection is possible in less than 1.8s, in 50% of the time a connection is establishes
between 1.8s and 2s, in 60% of time between 2s and 2.1s. By 2.2s the connection is
always established. This is modelled by probabilistic transitions between GpsEvnIdle
state and Connecting4. When the connection is established, boolean variable rec is set
to true. In our model GPS tries to acquire signal for 4.8s, or every 200ms for 24 times.
Once the connection is established, GPS goes into GetPosition state. Consumption in
GPS depends on how fast the connection is established, and that is modelled by proba-
bilistic transitions in the Environment state. From state GetPosition, GPS goes back into
GPSOff, broadcasts GpsRead event and executes the TurnGpsOff command. On broad-
casted event GpsRead, Board goes from GpsWarmUp to ZigBeeWarmUp and broad-
casts event ZigBeeOn.

ZigBee, a low-power secure networking protocol, is used to transmit the collected
readings to a base station, from where data is further transmitted by a 3G connection to a
database. We modelled the power consumption in the transmitting and receiving states,
for data transmission and acknowledge reception. Once this process is finished ZigBee
goes back to ZigBeeOff, broadcasts ZigBeeRead event and executes command TurnZig-
BeeOff. On the event ZigBeeRead, Board goes from ZigBeeWarmUp to DeepSleep,
broadcast the event Done and executes the command GoToDeepSleep. The broadcasted
event Done moves Test from Testing to Query state, where the queries

”?P.min”, ”?P.max”, ”?$cons.min”

for min and max probabilities (P), and min costs of the consumption ($cons) are spec-
ified. They are used for the calculation of the probability that the Board will go from
initial DeepSleep back to DeepSleep mode, and to calculate the consumption in one cy-
cle. Current consumption is specified in mA values according to the specification from
Waspmote technical documentation [22]. From the pChart in Figure 1, a PTA model
is automatically generated by flattening the hierarchical structure and creating PRISM
input code in the form of guarded commands. We outline the translation scheme.

Constants and variables To each Basic state an unique numerical value on its scope is
assigned. For instance, on the scope ZigBee, states ZigBeeOff, Receiving, and Transmit-
ting are assigned values 0,1,2 respectively. Those values are generated automatically.
The value of constant N is specified by the designer of the model. Variables are automat-
ically generated for each XOR state. For instance XOR state Board has five substates,
and variable board is specified as integer with range 0..3, and initial value is DeepSleep,
or 2. On the scope of each XOR state a special clock variable is generated. Variables
rec and i are defined by the user as boolean and integer in the range 0..N; all integer
variables must be given a range
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Module From the pCharts representation, which consists of three concurrent processes,
only one module of PRISM is created. This is achieved by the translation of parallel
states into (nested) guarded commands with multiple assignments according to the rules
described in [6].

Invariant Timed transition is enabled when clock variable reach value specified on the
timed transition. For instance in Environment, transition from Connecting3 to Connect-
ing4 state happens in 100ms. That is specified by clock invariant

(environment = Connecting3 => environmentclk <= 100)

which indicates that while in Connecting3, clock on the environment scope should be
less or equal to 100. For each timed transition, an invariant is automatically generated.
These invariants are not seen by the user and serve a different purpose than the invariants
the user can specify to check the correctness of transitions.

Guarded Command The behaviour is described by commands. By the command

[](environment = Connecting3)&(environmentclk = 100)−>

(rec′ = true)&(environment′ = Connecting4)&(environmentclk′ = 0);

the transition form state Connecting3 to the Connecting4 happens when environment is
in Connecting3 and environmentclk is equal to 100. On the transition, environment is
assigned Connecting4 and environmentclk is reset. The cction on this transition is the
assignment of true to the variable rec. For each event at least one guarded command is
created.

Rewards Properties based on costs are specified on states or transition. In our example,
for each state of Device, the cost of consumption cons is specified. That is passed to
PRISM in the module rewards ... endrewards; for instance when the board is in
DeepSleep, the current is only 0.062 mA. Snippet of Generated PRISM Code1

pta

const N=24; const ZigBeeOff=0; const Receiving=1; const Transmitting=2;

const GpsWarmUp=0; const ZigBeeWarmUp=1; const DeepSleep=2; const pHWarmUp=3;

...

module watermonitor2

environment:[0..5] init GpsEnvIdle; environmentclk : clock;

board:[0..3] init DeepSleep; boardclk : clock;

gps:[0..4] init GpsOff; gpsclk : clock;

...

rec: bool init false;

i:[0..N] init 0;

invariant

1 Full generated code is published on the pState web site http://pstate.mcmaster.ca/.

http://pstate.mcmaster.ca/
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(environment=Connecting3=>environmentclk<=100)

& (environment=Connecting1=>environmentclk<=200)

& (environment=InitialDelay=>environmentclk<=1800)

...

endinvariant

[] (gps=Transit)&(gpsclk=0)->

(gps’=rec?GetPosition:Continue)&(gpsclk’=0);

[] (zigbee=Receiving)&(zigbeeclk=100)&(board=ZigBeeWarmUp)

&(test=Testing)->

(test’=Query)&(board’=DeepSleep)&(boardclk’=0)&(testclk’=0)&

(zigbee’=ZigBeeOff)&(zigbeeclk’=0);

...

endmodule

rewards "cons"

(board=GpsWarmUp): 9;

(board=DeepSleep): 0.062;

...

endrewards

Results The verification is done by the PRISM Digital Clock engine. The created model
has 17221 states and 17232 transitions. The calculated minimal and maximal proba-
bilities (P.min and P.max) to reach Query are the same and 1, which means that the
test always terminates. There are no nondeterministic transitions, so the min and max
probabilities are equal. The calculated expected minimal consumption (cons.min) is
248581.78mAms, and it took 126.65s to do calculation. The maximum time of one cy-
cle is a simple sum of deep sleep time (10000ms) and the times to read pH (5ms), get
position of GPS (2210ms), and send data by ZigBee (600ms) which is 12815ms. So,
the average current consumption is 248581.78mAms/12815ms = 19.39mA. Waspmote
devices are usually powered by the battery of 6600mAh, so according to our calcula-
tion the battery can last for approximately 340 hours, or 14.1 days. Thus we are able
to predict automatically the battery life from the model. All properties are verified on
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 12.0GB of RAM and on 64-bit Operating
System.

4.1 Waspmote Sensor C Code

The executable code is generated only for the part of the model, which does not have
probabilistic transitions. We need to selecting Device by mouse click on blue state and
then we select View C Code from main menu.

Snippet of Generated C Code

/* Variables */

enum board_status {DeepSleep, pHWarmUp, ZigBeeWarmUp, GpsWarmUp} board;

enum zigbee_status {ZigBeeOff, Receiving, Transmitting} zigbee;

enum ph_status {pHSensorOn, pHOff} ph;

enum gps_status {Continue, GetPosition, GpsOff, Transit, GpsCheck} gps;
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int i;

#define MAX_TIME_EVENTS 8

void exactly4 (long t);

void exactly5 (long t);

void exactly6 (long t);

void exactly7 (long t);

void exactly0 (long t);

void exactly1 (long t);

void exactly2 (long t);

void exactly3 (long t);

int main(void){

pthread_t threadRun; // thread variable

/* initialize data to pass to thread */

eventdata.n = 0;

eventdata.tr = false;

eventdata.ir = true;

/* create schedule run thread */

pthread_create (&threadRun, NULL, (void *) &run, (void *) &eventdata);

/* Initialization */

board = DeepSleep;

schedule( &exactly0, 10000, 1);

zigbee = ZigBeeOff;

ph = pHOff;

gps = GpsOff;

i=0;

return 0;

}

void exactly0(long t){

pHOn();

board = pHWarmUp;

}

void pHOn(long t){

if ((ph == pHOff)) {

pHTurnOn();

ph = pHSensorOn;

schedule( &exactly3, 5, 1);

}

}

...
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At the initialization, the timed event exactly1 is scheduled in 10000ms. When it runs, it
broadcasts the event pHOn and moves Board into pHWarmUp state. Broadcasted event
pHOn moves state pH from pHOff to pHSensorOn, sets a new timed event exactly3
to be run in 5ms, and calls input-output action PhTurnOn. This action is hardware de-
pendent and it is part of a prewritten input-output library. All actions which are not
broadcasting events, should be defined in the input-output library. Thus we are able to
predict automatically the battery life from the model.

5 Conclusions

This paper reports on ongoing work on the pChart formalism and its associated tool,
pState. For quantitative verification we use the probabilistic model checker PRISM,
but the tool architecture allows in principle other probabilistic model checkers like
MRMC [20], or some tool from the MoDeSt [21] toolset to be added. The focus in
pState is on code generation for embedded microprocessors. The goal is to have a seam-
less and automated approach from modelling and analysis to code generation that can be
used by engineers to evaluate design alternatives and to generate trustworthy code. Our
overall goal is to support a holistic approach in which qualitative properties, notably
structural well-formedness, correctness with respect to invariants, and timing guaran-
tees, can be verified together with quantitative properties, notably resource consump-
tion, reliability, and performance. These properties cannot be analyzed by considering
exclusively the computerized part; rather, its environment has to be considered to cer-
tain extent.

In the case study we presented numerical result of power consumption calculation
for sensor motes. The same result can be calculated by some spreadsheet tools, but we
believe that our approach is more convenient in a sense that calculation is automatic.
On the model we can explore alternative designs and immediately validate the impact
on the overall power consumption. Once the design is optimized, the framework of
executable code is generated.

One of the principal challenges in quantitative and qualitative verification of real-
life systems is scalability of probabilistic model checker. Model can be too big to be
verified by analysis of a model’s state space. One of the way to overcome state-space
explosion is an abstraction in which parts of the model that are not relevant for a particu-
lar property are taken out. Another approach is statistical verification, in which property
satisfiability is given with some probability. With the development of new generations
of model checkers scalability improves, and we believe that both qualitative and quan-
titative verification will become an inevitable part of software modelling tools in near
future.
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