
Chapter 7
Analysis and Implementation of Embedded
System Models: Example of Tags in Item
Management Application

Bojan Nokovic and Emil Sekerinski

7.1 Introduction

Verification of probabilistic systems is a technique for establishing if quantitative
properties hold for a particular system model. The properties are expressed in
temporal logic extended with probabilistic and reward operators. The model can
be specified by engineers in a high-level modelling language as a variant of
Markov chain processes annotated with costs and rewards, and used as input for
a probabilistic model checker, e.g. [1]. Such system models can serve only for
analysis.

Traditional state machines are flat and sequential in nature. To effectively allow
representing complex behavior, such as that of communication protocols, state-
charts, which are hierarchical state machines with concurrency and broadcasting
were introduced [2]. Hierarchy is a structuring method that allows the developer to
maintain an overview of large and complex applications. The most abstract view
is at the outermost level and zooming in reveals details in lower level views. The
design process begins with an outline of the application and then stepwise adds
functionality. Concurrency and broadcasting are used to describe parallel tasks and
communication.

Statecharts are used as a graphical specification tool for reactive systems, but
they are executable and compilable like programming languages [3]; pCharts extend
statecharts further with probabilistic transitions, timed transitions, stochastic timing,
state invariants, and costs/rewards assigned to states and transitions [4, 5]. pCharts
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are supported by pState,1 a tool for the holistic design: in addition to generating
executable code, pState can be used to model the system’s environment and to verify
quantitative properties like resource consumption (e.g. power), reliability (e.g. lost
messages, life expectancy), and performance (e.g. throughput). Such queries can be
specified directly on pCharts.

We use an application with electronic tags to illustrate the holistic design
process. Section 7.2 reviews the design process. Section 7.3 gives an overview of
the architecture and functionality of pState. Section 7.4 describes the process of
executable code generation from pCharts. Section 7.5 presents the process of gen-
erating Markov decision processes and probabilistic timed automata for the PRISM
probabilistic model checker. Section 7.6 describes the generation of the executable
code framework. The remaining sections present a case study: on the example of
the DASH-7 ISO/IEC 18000-7.2 communication protocol, we first give a system
collision model in Sect. 7.8, then a model of power consumption in Sect. 7.9, and
finally the executable code framework in Sect. 7.10. The final section summarizes
the contribution.

7.2 A Holistic Design Process

Existing automated tools for analyzing discrete, timed, probabilistic, or stochastic
models have a textual user interface, which makes them less suitable for engineers
developing larger systems. Visualization of models in the form of hierarchical state
machines, like statecharts, allows a view where the whole system is represented
from the perspective of related states. An extension of statecharts with probabilistic
transitions, timed transitions, and stochastic timing is proposed in [6]. Invari-
antcharts, statecharts with state invariants are introduced in [7]. pCharts support
probabilistic transitions, timed transitions, stochastic timing, state invariants and add
costs/rewards assigned to states or transitions. Through the pState editor, the pChart
system model is entered. Quantitative queries are specified directly in the pCharts.
After validation, a system without timed transition can be verified over a Markov
decision process for systems (MDP) and a system with timed transitions over a
probabilistic timed automaton (PTA); these are passed to a probabilistic model
checker. The correctness of transitions with respect to state invariants is checked
with a combination of the probabilistic model checker and a satisfiability modulo
theories (SMT) solver. Executable code for the software part of the system can be
generated and its worst-case execution time (WCET) analyzed. The architecture of
pState is in Fig. 7.1.

1http://pstate.mcmaster.ca.
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Fig. 7.1 Top-level pState architecture

7.3 pState Editor

The editor is designed on the JHotDraw (JHD) 7.6 framework [8]. As a starting
point we use frameworks from the org.jhotdraw.samples package. Figure 7.2 is a
view of the pState graphical interface, which shows features of a TV set represented
as a pChart. Components like states and transitions are added in a drag-and-drop
fashion using icons in the toolbar. States without children are called Basic states.
On the TV set, chart states Standby, WarmingUp, Displaying, Waiting, On, and Off
are Basic states. Compositional states are either AND states or XOR states. State
Working is an AND state, it has two children, Pictures and Sound, separated by a
dashed line. When the chart is in Working, it is at the same time in both Picture and
Sound. Composite XOR states are (1) Picture with two Basic states WarmingUp and
Display, (2) Sound with three children Waiting, On, and Off, and (3) the top state
root with two children, Working and Standby.

The TV control activity is partitioned into two states, the Basic state Standby,
and AND state Working. The initial state is Standby. When the chart is in Working,
it is in both the Picture and Sound XOR states. Within Picture the chart is in one of
the basic states WarmingUp or Displaying, within Sound the system is in one of the
Basic states Waiting, On, or Off. The invariant of Working specifies that whenever
Picture is in Displaying, Sound must not be in Waiting, i.e. must be either in On or
Off. The invariant of Sound specifies that the sound level lev must be between 1 and
10; the invariant must be established by the initialization of Sound and be preserved
by all transitions within Sound. The event power causes the chart to flip between
Standby and Working, no matter in which substates of Working the chart is. The
transition on event warm broadcasts event soundOn. The transition on events down
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Fig. 7.2 Statecharts with invariants for TV set

can only be taken if lev > 1 and when taken, will decrement lev. The transition on
power to Working sets Picture and Sound to the default initial states WarmingUp
and Waiting and sets lev to 5.

The design tools in Fig. 7.2 are for selection, state (basic and composed),
transitions, initial pseudostate, probabilistic pseudostate, concurrency line, choice
pseudostate, quantitative query, and comment. It is straightforward to add other
tools to the button factory. We additionally use the standard attribute bar with all
selections from the JHD framework. This bar is an example of how new features,
like colour of the figure, can be added to the drawing editor.

7.4 From Hierarchical Charts to Code

pState generates code according to an event-centric interpretation, in which events
are executable procedures, implying that an event is processed before the next one
arrives. This interpretation is according to the requirements-oriented semantics [9].
This is in contrast to the implementation-oriented semantics based on the state-
centric interpretation in UML and Statemate [10], in which events are data in
queues. The event-centric interpretation was already used by iState, the predecessor
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of pState [11]. The event-centric approach is suitable for those kind of reactive
systems where events are processed quickly enough that queueing is not needed and
where blocking of events is undesirable. This semantic is close to [12]. Currently
we do not support spontaneous transitions—transitions without an event.

Hierarchical state machine diagrams consist, essentially, of just three compo-
nents: a set of states, an initial state, and a set of transitions. The system starts at the
initial state, then follows transitions on external events to move to other states. States
can hold entire sub-state-machines within themselves. Concurrent states express
orthogonality or independence. A transition t from a set of source states ss (of
distinct concurrent states) to a set of target states tt (of distinct concurrent states),

is a tuple written as t D ss
EŒg�=b $c�����! tt, where E is the transition event, g is a

Boolean expression, the transition guard, $c is a non-negative number, the cost of
the transition and b is a statement, the transition body. In a regular transition, E is the
event name, while in a timed transition E is the number of time units [5]. Transitions
can be probabilistic, in which case target states are indicated as probabilistic
alternatives [4]. Each transition must have E, while guard g, cost c, and body b
are optional. All states are nested in the state root, which must not be the source or
target of any transition.

In the transformation of a pChart to intermediate code, for each event, code
associated with that event is generated and for every XOR state, an enumeration
variable is generated holding the names of children states. The code generation is
based on the recursive algorithm of [5].

The scope of a transition is the innermost state which contains all its source and
target states. The grammar of the generated intermediate code has two mutually
recursive productions, Scopeop and Childop. In the intermediate code, one variable
for each state in the hierarchy is declared, starting with root, representing in which
child state the system is. The algorithm for generating the operation Op of a regular
event visits all transitions of one scope, starting with root as scope, before visiting
transitions in children. The transitions on one scope are of the form

Trigger ! Effect Œ� : : : Œ� Trigger ! Effect

with a nondeterministic choice (Œ�) among them, and each choice being guarded
(!). These transitions take priority (==) over transitions in children. If the child is
an XOR state, there is first a test to determine in which state the system is (Test),
followed by the transitions with that child as scope. If the child is an AND state,
then transitions on that event in all children are taken in parallel (k). The trigger of a
transitions contains tests for all the source states of the transition (Variable D State)
and the guard (Expr). The effect of a transition is executing the body of the transition
(Statement) in parallel with moving to target states (Goto), with a probabilistic
choice (˚) among such alternatives, such that the probabilities for each alternative
(Probability W : : :) sum up to 1. Thus the intermediate representation Op of a regular
pCharts event is of the following form:
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Fig. 7.3 Operation on event E

Op WWD Scopeop
Scopeop WWD .Trigger ! Effect Œ� � � � Œ� Trigger ! Effect/ == Childop
Childop WWD .Test ! Scopeop Œ� � � � Œ� Test ! Scopeop/ == skip

j Scopeop k � � � k Scopeop
Test WWD Variable D State
Trigger WWD Variable D State ^ � � � ^ Variable D State ^ Expr
Effect WWD Probability W Statement k Goto ˚ � � � ˚ Probability W Statement k Goto
Goto WWD Variable WD State k � � � k Variable WD State

As an example, the operation op.E/ of the event E in Fig. 7.3 is as follows:

op.E/ D
.root D S0 ! x WD x C 1 k root WD S1 k s2 WD P1 k s3 WD Q1/

==

root D S1 !
.s2 D P1 ! x WD x � 1 k s2 WD P2/ == skip
k
.s3 D Q1 ! 0:2 W s3 WD Q2 ˚ 0:8 W s3 WD Q3/ == skip

==

skip

The full description of generalized program statements skip, stop, multiple
assignment, guarded statement, nondeterministic choice, probabilistic choice, and
parallel composition used to define the meaning of events is in [5, 13]. The body of
a transition is an action or chart statement, like x WD x C 1. The grammar of chart
statement is
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ChartStatement WWD if Expr then ChartStatement Œelse ChartStatement� j
ChartStatement k � � � k ChartStatement j
Variable; : : : ; Variable WD Expr; : : : ; Expr j
Event

Expr WWD Variable j real j integer j true j false j UnOp Expr j
Expr BinOp Expr jj in State

UnOp WWD � j :
BinOp WWD C j � j � j div j mod j D j ¤ j < j � j > j � j and j or

If an event leads to broadcasting of another event, the second one is executed
in parallel with the first one, which imposes that there are no race conditions in
the parallel execution. The translation of parallel statements needs extra processing
since for executable code generation, parallel statements have to be converted into
sequential statements using auxiliary variables. Parallel composition is first verified
to be well defined such that variables assigned in parallel statements are disjoint,
and then transformed to multiple assignments using the fact that .x; y WD E; F/ D
.x WD E k y WD F/ [5].

Before code generation, the validation performs three checks on charts: (1)
Composite states must not be childless, AND state must have at least two children,
each child of an AND state must be an XOR state; (2) all XOR states have initial
transitions; (3) transitions between concurrent states are not allowed.

For target code generation, the visitor [14] pattern with two methods, transform
and translate is employed, see Fig. 7.4. The elimination of parallel composition is
done by transform and the creation of either executable code (C, assembly) or input
code for a probabilistic model checker by translate.

7.5 Model Checker Input Code

From pCharts without timed transitions, pState generates an MDP model, and
from pCharts with timed transitions, pState generates a PTA model as input for
the PRISM model checker [15]. As PRISM requires the model to be a flat set of
guarded commands with multiple (probabilistic) assignments as commands, after
the elimination of parallel composition, the intermediate code is flattened. The full
code generation algorithm is given in [5].

7.5.1 MDP

Markov decision processes are a variant of Markov chains that permit both proba-
bilistic and nondeterministic choices. Our presentation of MDP follows [16–18].
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Fig. 7.4 Class diagram of the visitor pattern in pState

Definition 1. A labelled Markov decision process is a tuple M D .S; Ns; A; p; l; r/
where

– S is countable nonempty set of states;
– Ns is the set of initial states;
– A is the finite set of actions;
– p : S � A ! Dist(S) is the transition probability function;
– l : S ! 2AP is the labelling function;
– r : S � A � S ! R is the reward function.

and AP is a set of atomic propositions. We assume that M is time homogeneous;
S, A, p, l, and r do not vary over time, and that S and A are discrete.

Example. The pChart of a simple MDP and the generated PRISM code are shown in
Figs. 7.5 and 7.6. There are two transitions on wakeup from S0, the initial state, the
choice between them being nondeterministic. One of the transitions is probabilistic,
in which with 70 % probability state S1 is reached and with 30 % probability the
system stays in the initial state. The other transition from S0 to S1 is deterministic,
where on the event wakeup state S1 is always reached. The transition on the event
send is deterministic and the transition on event recv is probabilistic. Rewards are
assigned to the states by $r D e, where and e � 0 is a real expression.

In S3 we specify two queries, the query ‹$r:max returns maximum costs to reach
S3, and the query ‹P:max returns maximum probability to reach state S3. Those
two properties are translated into PCTL formulae R“r00max D‹ŒF.root D S3/� and
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Fig. 7.5 State-transition diagram of the MDP model

mdp

const S0=0; const S1=1; const S2=2; const S3=3;

module mdpexample
root :[0..3] init S0;

[send] ( root=S1) −> (root’=S2);
[wakeup] ( root=S0) −> 0.3:(root’=S0) + 0.7:( root’=S1);
[wakeup] ( root=S0) −> (root’=S1);
[recv] ( root=S2) −> 0.1:(root’=S1) + 0.9:( root’=S3);

endmodule

rewards ”r”
( root=S0): 0.1;
( root=S1): 3;
( root=S2): 2;
( root=S3): 0;

endrewards

Fig. 7.6 MDP PRISM code generated by pState

Pmin D‹ŒF.root D S3/�, respectively. The calculated maximum costs to reach state
S3 is 5.6984, and the maximum probability to reach S3 is 0.9999, that is 1. The error
comes from floating point rounding of the model checker. In this example, there
is a nondeterministic choice between the probabilistic and deterministic wakeup
transitions from state S0 to state S1. Eventually, in both cases, the transition on
event wakeup leads to S1 state. Calculated reward of 5.698 is maximum expected
long-run reward. This is the same as a long-run average reward, but only if there are
no nondeterministic transitions.

7.5.2 PTA

Timed automata (TA) provide a natural way for expressing timing delays of
real-time systems [19]. On a TA, we can prove the correctness of finite-state
real-time systems using the trace semantics originally proposed in a model for
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communicating sequential processes (CSP) [20]. Probabilistic timed automata
(PTA) are an extension of TA used for formal modelling and analysis capabilities for
systems with probabilistic, nondeterministic, and real-time characteristics [17]. PTA
augmented with quantitative information in the form of costs or reward are called
priced probabilistic timed automata. On a PTA model two main classes of properties
can be analyzed, the minimum/maximum probability of reaching a target, possibly
within a time bound and the minimum/maximum expected reward accumulated until
a target is reached, using quantitative abstraction refinement and statistical model
checking verification methods [21].

Definition 2. A probabilistic timed automaton (PTA) is a tuple
P D .S; Ns;X; A; inv; enab; prob; l/, where

– S is the countable nonempty set of states;
– Ns is the set of initial states;
– X is a finite set of clocks;
– A is the finite set of actions;
– inv : S ! CC(X) is an invariant condition, a clock constraint for each state;
– enab: S � A ! CC(X) is an enabling condition;
– prob: S � A ! Dist(2X� S) is a (partial) probabilistic transition function;
– l : S ! 2AP is the labelling function;

Example. The pChart of a simple PTA and the generated PRISM code are shown in
Figs. 7.7 and 7.8. The PTA has clock rootclk with initial value 0. In the state S0, the
system waits for the wakeup event for 1 time unit. State S0 also allows a transition
to state S1 when rootclk D 1 and the PRISM invariant root D S0 ) rootclk � 1

forces the transition to be taken when rootclk reaches 1. In the state S0, the system
waits for wakeup for a maximum of 1 time unit. If the event does not occur, it
goes to next state on timed transition. On this model, properties like the expected
time to reach state S3 or the probability of reaching state S3 in a given number of
time units can be verified. In the state S3, we specify two queries: ‹P:maxF < 10s
returns 0.9, the maximum probability to reach state S3 in 10 time units (seconds)
and ‹P:minF < 10s returns 0.819, the minimum probability to reach S3 in 10 time
units. Those properties cannot be verified on an MDP model. While PRISM uses
abstract time units, in pCharts the time unit, here s, must be explicitly specified.

S0 $r=0.1

S1 $r=3 S2 $r=2

S3 $r=0 P 
wakeup

@0.7

@0.3 i 

wakeup

1s

 P 

4s
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@0.9

Fig. 7.7 State-transition diagram of the PTA model
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pta

const S0=0; const S1=1; const S2=2; const S3=3;

module ptaexample
root :[0..3] init S0; rootclk : clock ;

invariant
( root=S1=>rootclk<=1)& (root=S2=>rootclk<=4)

endinvariant

[wakeup] ( root=S0) −> (root’=S1)&(rootclk’=0);
[wakeup] ( root=S0) −> 0.3:(root’=S0)&(rootclk’=0) + 0.7:( root’=S1)&(rootclk’=0) ;
[] ( root=S2)&(rootclk=4) −> 0.1:(root’=S1)&(rootclk’=0) +

0.9:( root’=S3)&(rootclk’=0) ;
[] ( root=S1)&(rootclk=1) −> (root’=S2)&(rootclk’=0);

endmodule

rewards ”r”
( root=S0): 0.1;
( root=S1): 3;
( root=S2): 2;
( root=S3): 0;

endrewards

Fig. 7.8 PTA PRISM code generated by pState

A PTA in PRISM is verified by one of two engines, digital clocks [22] and
stochastic games [23]. The specification of queries or quantitative properties of a
PTA is based on probabilistic computational tree logic PCTL [17, 24]. In the digital
clock engine, clock variables are allowed in P (probability) operator expressions, as
well as in F (eventually) and U (until) expressions. However, this engine does not
support time-bounded reachability properties and clock constraints cannot use strict
comparison operators, e.g. rootclk < 2. Also, comparison between clock variables
is not allowed. Automata with such constraints are called closed, diagonal-free
probabilistic timed automata. The digital clocks method is based on a language-level
translation from a PTA model to an MDP model. In the stochastic games engine,
properties cannot contain references to clocks. Only unbounded or time-bounded
probabilistic reachability properties are allowed. For this, only the P operator is
used. The basic types of path properties that can be used inside the P operator are:
X (next), U (until), F (eventually), G (always), W (weak until), and R (release), but
the stochastic game engine currently (V 4.2.1) only supports the F path operator.
The S operator, used to reason about the steady-state behavior of model, and the R
operator, used to calculate reward properties, are not supported.
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7.5.3 Properties Specification

pState allows quantitative queries to be placed inside hierarchical states, making
use of the state hierarchy, while the specification of properties in PRISM is done
separately from the model.

For example, in pState we can attach ‹P:min to a state, say S, to compute the
minimal probability to reach S. If S is child of root, pState generates the PCTL
formula Pmin D‹ŒF.root D S/� for PRISM. The same query can be attached
to another state, possibly deeper in the hierarchy, and pState would generate
a corresponding, more complex property specification. Similarly, if the reward
property ‹$tran:max for computing the maximal reward to reach that state is placed
in S, pState generates Rf“tran00gmax D‹ŒF.root D S/�. Quantitative queries in
pState are according to the following grammar:

Query WWD ‹.Probability j Reward/.:min j :max j > real j < real/ŒBound�ŒTarget�
Bound WWD F < Time
Target WWD 0.0Expr0/0

Probability WWD P
Reward WWD $Identifier
Time WWD digitfdigitg.d j h j s j ms/
Identifier WWD letterfletter j digitg

Quantitative queries are attached to a state or written in the special property
box. Currently only simple properties can be attached to states. For more complex
properties, which include more than one condition, property boxes have to be used.
For instance, the PCTL formula Pmax D‹ŒF.rootclk < T/&.root D S/� has to be
specified in a property box. With this property we can calculate the probability that
state S will be reached before T time units.

7.6 Executable Code

Target code is created by further translating the intermediate code, provided that
there are no probabilistic transitions in the sub-chart for which code is to be
generated. The intermediate code may contain parallel compositions emerging from
broadcasting (transitions in concurrent states are taken in parallel) and multiple
assignments. As multiple assignments are a special case of parallel composition,
both are treated uniformly by introducing auxiliary variables and sequentializing,
for example:

.x WD yjjy WD x/ D .x; y WD y; x/ D .var h D xI x WD yI y WD h/
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Specifications of costs/rewards are ignored for code generation. Nondeterministic
choice with guarded choices is translated as if-then-else or case statements in the
target code syntax. The abstract syntax of the executable code follows:

Statement WWD if Expr then Statement Œelse Statement� j
Statement I : : : I Statement j
Variable WD Expr j
case Variable of State W Statement : : : State W Statement j
call Event j
var Variable D Expr I Statement

pState generates code for PIC16F6xx in C or assembly language, and Libeli-
um/Arduino code for ATmega1281 micro-controller. Both are 8-bit RISC-based
micro-controllers.

7.6.1 PIC C Code

All executable files can be divided into two groups, (1) generated files and (2) pre-
written files. pState generates the file charts.c, which defines the behavior of the
application. Prewritten files main.c, setupProcessor.c, Scheduler.h, actions.h can be
divided into two groups: target independent, and target dependent files, similar as
for the assembly files shown in Fig. 7.9. Target independent files are main.c, and
Scheduler.h. The file main.c defines the entry of the application, and initializes
variables, chart states, and the scheduler. Then it enters an infinite loop which

Code generated
by pState

chartsApp.asm .obj

Manually written
code for scheduler
and device drivers

mainAsm.asm .obj

setupProcessor.asm .obj

.hex

Include files globalVars.inc P16F636.inc

Fig. 7.9 Structure of target code
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processes input events and schedules actions. The file Scheduler.h defines a data
structure which holds timed events and defines functions to schedule and cancel
timed events.

The target dependent file setupProcessor.c contains routines for processor
input/output initialization, timer initialization, etc. The file actions.c specifies how
external events will be processed. For instance, if a digital signal is connected
to PORTA bit 0 of the PIC16F6xx micro-controller, and if the presence of a
signal means high voltage on the pin, then that should be defined in actions.c as
#define SIGNAL .RA0 DD 1/.

7.6.2 PIC Assembly Code

Assembly code is created by translating the abstract executable code. Translation
of if-then-else and case statements is straightforward. Most micro-controllers have
an instruction which allow constants to be added immediately. In this approach
generation of the code is delayed until the mode of an expression is known, which
is known as delayed code generation [25].

We are using CBLOCK 0x20 or CBLOCK 0x40 to allow the variables declared
within the block to automatically increment to the next general register, starting
from 0x20 or 0x40. Address 0x40 and beyond are used for constants associated
with state names, while 0x20 to 0x39 are used for variables.

Names of variables in assembly code are generated as lowercase letter state
names. Variables are either integer subranges or Boolean. The generated code
consists of state and variable declarations, assignments and expressions, state
transitions, macros, statements, and timed transitions. Scheduler, initialization, and
I/O actions are not generated from the specification, they are write-once code. In
this way we have full control over the structure of the application, similar to the
approach described in [26].

Code generation depends not only on individual symbols but also on the values
of their attributes. We use a one-pass generation that delays emitting the code until
the attributes are known [25]. The generated code depends on the fact if the value
is held in a register or it is a known constant. If it is constant, the generated code
will be smaller since the value does not need to be stored to working register before
the operation is performed. Where the value is stored and how it is to be accessed is
indicated by attributes of expressions. In our implementation we have the following
attribute modes: Reg - special function registers, i.e. PORTA, STATUS, etc., Var -
general purpose registers, Const - constant, AccW - working register or accumulator.
In addition to those we have special modes for expressions like VarPlusConst,
VarMinusConst which indicate operations of addition or subtraction between factors
of type variable and constant. Once we know mode of an expression, optimized code
can be generated.
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7.6.3 Energia, Arduino-Like Code

Arduino is a C-derived programming language. Energia is an Arduino-like IDE for
TI LaunchPad (Tiva C) development board. In our implementation, the target is
the TM4C123 ARM micro-controller. The program is structured as two routines,
setup./ and loop./. The setup./ routine contains the initialization of variables and is
run only once. The loop./ routine is then executed continuously, allowing variables
to change and the program to respond to and control the board. The code can be
compiled on the Energia IDE. Custom routines in Energia can be written to perform
reoccurring tasks. They are declared like functions in C/CCC, with function return
type, name, and parameters. In our implementation we assume that no value is to be
returned, so the event function type is void.

The code generated from the example in Fig. 7.10 is in Fig. 7.11. All states
of the hierarchical structure are nested in the root state, which is declared as
the variable root. pCharts allows direct declaration only of integer subranges and
Boolean variables.

Functions that are unique to the Energia language and used to configure, read,
and write specific ports of the micro-controller can be called in the body of
transitions. Those functions have to be prewritten. They are ignored for the purpose
of verification. If we need to set up some pin to be INPUT or OUTPUT, that is
done by the pinMode(pin,mode) function; to read digital pin value, which can be
HIGH or LOW, the function digitalRead(pin) is used, and to write to pin digital-
Write(pin,value) is used. Handling an analog pin is done by analogRead(pin,value)
and analogWrite(pin,value). It reads and write the value from a specified analog pin
with 10-bit resolution.

Untimed event can be executed by (1) polling the trigger of the event or (2)
assigning external interrupt to the event. Polling can be done in a continuous loop
or by a timer. In our implementation we call the dispatcher function in the loop
to check if external trigger that causes the On or Off event is present. The same
functionality can be achieved by calling dispatcher after a predefined amount of
time (i.e. every 1ms). In the prewritten code of Fig. 7.12, the function that configures
hardware, HW_Init(), and the function dispatcher are shown.

Fig. 7.10 Simple switch
operation

S T
2s/x := 0

/x := 0

On[x= 0]/x := x+1

Off[x> 0]/x := x−1
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/∗
∗ Energia (Arduino) code generated from pCharts
∗/

#include ”OneMsTaskTimer.h”

/∗ Variables ∗/
#define T 0
#define S 1

int x;
int root ;

OneMsTaskTimer t teExactly0={2000, exactly0, 0, 0};

void exactly0 (){
if (( root==T)) {

x=0;
root=S;

}
}
void Off(){

if (( root==T)&&(x>0)) {
x=(x−1);
root=S;
OneMsTaskTimer::remove(&teExactly0);

}
}
void On(){

if (( root==S)&&(x==0)) {
x=(x+1);
root=T;
OneMsTaskTimer::add(&teExactly0);

}
}

void setup (){
/∗ Initialization ∗/
HW Init();
root=S;
x=0;
OneMsTaskTimer::start() ; // Start timer

}

void loop (){
dispatcher () ;

}

Fig. 7.11 Generated code for the chart in Fig. 7.10
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void HW Init(){
// Initialize the pushbutton pin as an input
pinMode(PUSH1, INPUT PULLUP);
pinMode(PUSH2, INPUT PULLUP);

}

void dispatcher (){
noInterrupts () ;
if ( digitalRead (PUSH2)==LOW) {

On();
}
if ( digitalRead (PUSH1)==LOW) {

Off() ;
}
interrupts () ;

}

Fig. 7.12 Prewritten hardware-related code, target TM4C123 micro-controller

7.7 Contention Resolution in DASH-7 ISO/IEC 18000-7.2

The ISO/IEC 18000-7.2 [27] standard provides an air interface implementation
for wireless, non-contact information system equipment for item management
applications. The RFID equipment is composed of two principal components: tags
and interrogators. We study a system with active tags, i.e. tags with own source of
energy, like battery. Each tag has a unique serial number and other data. It is intended
for attachment to a managed item. An interrogator is a device that communicates
to tags in its RF communication range. The interrogator controls the master–slave
protocol, reads information from the tag, directs the tag to store data, ensures
message delivery and validity. We present the method by which an interrogator
identifies and communicates with one or more tags present in the operating field
of the interrogator over a common radio frequency channel. Tags do not transmit
unless commanded to do so by the interrogator. An interrogator can communicate
with tags individualy, or with the tag population as a whole.

7.7.1 Tag Collection and Collision Arbitration

The tag collection process is an iterative process that includes methods for coordi-
nating responses from the tag population and handling collisions which occur when
multiple tags transmit at the same time. The entire tag collection process is referred
to as a complete collection sequence. Figure 7.13 shows a complete collection
sequence consisting of a wakeup period (WP) followed by a series of collection
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WP CP #1 CP #2

SP LP AP SP LP AP

Interrogator

TS1 ... TS5

Tag #3

Tag #2

Tag #1

Fig. 7.13 Interrogator-tag communication timing diagram

periods (CP). Each collection period consists of a synchronization period (SP), a
listen period (LP), and an acknowledge period (AP). The LP is further divided into
multiple time slots (TS).

For three tags and five time slots as shown in Fig. 7.13, in the first communication
period, tags #1 and #3 transmit in the same time slot, so there will be a collision.
In the first acknowledge period there is an acknowledgment only for the message of
tag #2. In the second communication period, tags #1 and #3 retransmit the message,
but this time tag #1 transmits in the time slot 1, and tag #3 transmits in time slot 4, so
there is no collision, and in the acknowledge period there are two acknowledgement
messages.

7.8 Collision Model

We can calculate the collision probability by calculating the number of possible
transmissions without collision and divide it by the total number of possible
transmissions. For n tags transmitting, the first tag can transmit in any of the m
time slots, the second tag should transmit in any of the m�1 slots to avoid collision,
and so on. The number of transmissions without collision is

NC D m � .m � 1/ � : : : � .m � n C 1/ (7.1)

while the number of all possible transitions is

AT D m � m � : : : � m D mn (7.2)
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Tag; M=5; c:0..M; N=3

 i 
TS 

 P 

NextTS

t1[c>M-N] @c / M

Collision

 i 
  

/c:=M

@ 1 - c / M

t2[c>M-N]/ c:=c-1

? P.min

Fig. 7.14 Collision model, three tags, five time slots

The probability that a collision will happen is simply

1 � NC=AT (7.3)

We assume a model of three tags N D 3 and five time slots M D 5. The number of
possible transmissions without collisions is NC D 5 � 4 � 3 D 60, and the number
of possible transmissions is AT D 5 � 5 � 5 D 125. The probability of at least one
collision according to (7.3) is 0:52.

The collision model represented by pCharts is shown in Fig. 7.14. In the Collision
state, by “‹ P:min00 we query the collision probability, or probability to go to
Collision state, which is calculated as 0.52. To calculate the collision probability
for a different number of time slots or a different number of tags, all we have to do
is to assign new numbers to M or N in Tag state declaration.

7.9 Collection Period Power Consumption

The collision model in Fig. 7.14 is without timed transitions and the generated input
code for the model checker is an MDP. But, in the power consumption model, we
need to know how long tags stay in states and the current consumption in those
states. The model of power consumption is shown in Fig. 7.17. From this model,
pState generates a PTA.

On the PTA model we can query the average power consumption in one
collection period (CP), taking into account the collision probability calculated
on the collision model. The current consumption for a typical active tag during
transmission is 9.2 mA, in receiving mode 0.2 mA, and in standby 0.0024 mA [28].
In the construction of the transitions we use data from Fig. 7.15. In the case of three
tags and five time slots, the collision probability is 0.52, or 52 %, so the transition
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Fig. 7.15 Collision probability for tags N D Œ2; 3� and time slots M D Œ3::9�

mdp

const M = 5;
const N = 3;
const Collision =0; const NextTS=1; const TS=2;

module collision
tag :[0..2] init TS;
c :[0.. M] init M;

[ t2 ] ( tag=NextTS)&(c>(M−N)) −> (c’=(c−1))&(tag’=TS);
[ t1 ] ( tag=TS)&(c>(M−N)) −> (1−(c/M)):(tag’=Collision) + (c/M):(tag’=NextTS);

endmodule

Fig. 7.16 PRISM code generated by pState for model shown in Fig. 7.14

from state Tx to Next is probabilistic with 52 % probability. That means if a collision
happens, the tag needs another collection period to perform the operation. In the
case of collision, the probability that all three tags select the same time slots is 4 %,
which is modelled by a probabilistic transition from Tx to ThreeCollisions state. If
there is a collision of two tags, in the next collection period, on five time slots, only
those two tags are retransmitting. According to Fig. 7.15, the collision probability is
20 %, and that is represented by probabilistic transition from TwoTags to Next state.
The maximum number of collection periods in the model is three (Fig. 7.16).

The queries are verified over the formulae Rf“cons00gmax D‹ŒF.tagconsum D
End/� and Pmax D‹ŒF.tagconsum D End/&.i D 3/�. For the first, the calculated
value for the electrical charge is 280.72 mAms (Fig. 7.17). The probability of not
receiving all tags in three collection periods is calculated as 0.1106, or 11.06 %, so
about 89 % of time all tags are read in three collection periods (Fig. 7.18).
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TagConsum; i:0..3

 i 
 /i:=0

Rx $cons=0.5

Tx 
$cons=9.2

68ms[i<3]/i:=i+1

15ms[i=1]

End ? $cons.max 

@0.48

Next
$cons=0.2

@0.52

 C 

[i 2]

[i>2]

 P 
1ms@0.2

@0.8

 P 15ms[i 1]

@0.04 @0.96

1ms

TwoTags
$cons=0.2

ThreeCollisions
$cons=0.2 P 

0..1 ms

? P.max (i=3)

Fig. 7.17 Collection period power consumption

7.10 Executable Tag Code

Figure 7.19 gives the tag operation model. It has two parallel processes, Tag, which
represent tag operation, and Mode which represents tag transition from sleeping to
working mode and back. Initially, Mode is in Sleep, in which periodically, every
1ms, the presence of a wakeup signal is checked. If there is no signal, it goes
back to Sleep and repeats the process after 1ms. If there is a wakeup signal, the
indicator field is set to true, and the system goes first into Field and immediately
to FieldON. From that state it goes to Work and broadcasts the event WakeUp.
That event moves Tag from Start into Preamble. On that transition, procedure
WAKEUP is called. It has to recognize the (WP) preamble, Fig. 7.13, and has to
be executed in 2.45 to 4.8 seconds. Next, Tag goes into CP state in which it receives
a command form the interrogator, and goes into listen period LP, in which the tag
transmits its message in a randomly selected time slot. In the Ack state, Tag waits
for confirmation or acknowledgment message. If the received command informs the
tag that communication is done, it goes to Finished and then back to Start. On the
transition form Finished to Start, local event GoToSleep is broadcasted. This forces
the parallel task Mode to go from Work to Sleep mode. Another way to go from Work
to Sleep is on timeout, which is 30 seconds according to the protocol specification.

From the specification we generate the framework for tag application according
to the DASH-7 protocol specification. For the full implementation it is necessary
to implement the following subroutines (1) WAKEUP to detect the low frequency
wake up signal, (2) RECEIVECP to receive broadcast and point-to-point commands,
(3) LISTENPERIOD to send a packet message which contains a unique tag
identification number to the interrogator in the selected time slot, (4) ACKPERIOD
to receive an acknowledgement from an interrogator. Those routines should satisfy
timing requirements from the general framework model. Each transition can



196 B. Nokovic and E. Sekerinski

pta

const Next=0; const Rx=1; const Tx=2; const TwoTags=3; const End=4; const
ThreeCollisions =5;

module powerconscp2
tagconsum :[0..5] init Rx; tagconsumclk : clock ;
i :[0..3] init 0;

invariant
(tagconsum=Next=>tagconsumclk<=1)
& (tagconsum=Rx=>tagconsumclk<=68)
& (tagconsum=Tx=>tagconsumclk<=15)
& (tagconsum=TwoTags=>tagconsumclk<=1)
& (tagconsum=ThreeCollisions=>tagconsumclk<=1)

endinvariant

[] (tagconsum=ThreeCollisions)&(tagconsumclk=1) −> 0.52:(tagconsum’=Next)
&(tagconsumclk’=0) + 0.48:( tagconsum’=End)&(tagconsumclk’=0);

[] (tagconsum=Tx)&(i=0)&(tagconsumclk=15) −> 0.52:(tagconsum’=Next)
&(tagconsumclk’=0) + 0.48:( tagconsum’=End)&(tagconsumclk’=0);

[] (tagconsum=Next)&(tagconsumclk>=0)&(tagconsumclk<=1) −>
(tagconsum’=(i<=2)?Rx:End)&(tagconsumclk’=0);

[] (tagconsum=Tx)&(i!=0)&(tagconsumclk=15) −> 0.96:(tagconsum’=TwoTags)
&(tagconsumclk’=0) + 0.04:( tagconsum’=ThreeCollisions)&(tagconsumclk’=0);

[] (tagconsum=Rx)&(i<3)&(tagconsumclk=68) −> (i’=(i+1))&(tagconsum’=Tx)
&(tagconsumclk’=0);

[] (tagconsum=TwoTags)&(tagconsumclk=1) −> 0.8:(tagconsum’=End)
&(tagconsumclk’=0) + 0.2:( tagconsum’=Next)&(tagconsumclk’=0);

endmodule

rewards ”cons”
(tagconsum=Next): 0.2;
(tagconsum=Rx): 0.5;
(tagconsum=Tx): 9.2;
(tagconsum=TwoTags): 0.2;
(tagconsum=ThreeCollisions) : 0.2;

endrewards

Fig. 7.18 PRISM code generated by pState for model shown in Fig. 7.17

be automatically transferred into assembly code and worst case execution time
(WCET) can be calculated in terms of processor cycles. Assembly code generation
and calculation of WCET on pCharts is described in [29].

From pCharts in Figs. 7.14 and 7.17, input code for the probabilistic model
checker is generated, and from the pCharts in Fig. 7.19, executable code is
generated. All generated code is posted on the pState web site.
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DASH7; done:bool; field:bool

Tag
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Preamble CP
2450..4800 ms/ RECEIVECP

Start
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 C 
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[done]

Mode
Sleep
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GoToSleep
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0..ms/WakeUp

0..1ms/GoToSleep

/ field:=false

Fig. 7.19 Tag model

7.11 Conclusion

In this chapter, we presented the model based process of system analysis and
code generation. From the same model, input code for probabilistic model checker
and an executable code are generated. Probabilistic model checker is used for
quantitative and qualitative properties analysis. The target for executable code are
8- and 16-bit micro-controllers used in embedded systems. The code is generated
in C or assembly language. As a part of assembly executable code generation, we
can calculate execution time calculation for each graph transition. Target micro-
controllers do not have features like multi-stage pipelines and caches, so execution
time in a number of executable cycles is actual execution time. The integrated
process of model-based analysis and code generation increases an accuracy of
analysis and fidelity of generated executable code.

We created a tool, pState, for the purpose of holistic software design. In addition
to executable code generation, the tool is used to verify quantitative properties.
This is of practical interest specially for complex embedded systems where not
only functional correctness and timing guarantees are relevant, but also quantitative
properties, which cannot be analyzed by considering exclusively the software part.
The environment has to be considered as well.

In the example of RFID tag working according to DASH-7 ISO/IEC protocol, we
show how one tool can be used for system property analysis (collision probability),
device property analysis (power consumption), and device code generation.

The goal is an automated approach from modelling and analysis to code
generation. This can be used to evaluate design alternatives and generate trustworthy
code.
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